250 likes | 423 Views
Computational Entropy. Salil Vadhan Harvard University (on sabbatical at MSR-SVC and Stanford). Joint works with Iftach Haitner (Tel Aviv), Thomas Holenstein (ETH Zurich ), Omer Reingold (MSR-SVC), Hoeteck Wee (George Washington U.), a nd Colin Jia Zheng (Harvard).
E N D
Computational Entropy SalilVadhanHarvard University (on sabbatical at MSR-SVC and Stanford) Joint works with IftachHaitner (Tel Aviv), Thomas Holenstein (ETH Zurich), Omer Reingold (MSR-SVC), Hoeteck Wee (George Washington U.), and Colin Jia Zheng (Harvard) TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AAAA
How I came to work onPseudorandomness • Fall 93: CS226r “Efficient Algorithms,” Prof. M. Rabin • “The R word plays a role” • I am amazed by the power of randomness. • Spring 95: S. Rudichtells me about evidence that P=BPP. • I am skeptical. • 1996-1999: I learn about pseudorandom generators & derandomization. • I need to work on this too!
One-Way Functions [DH76] easy • Candidate: f(x,y) = x¢y Formally, a OWF is f : {0,1}n! {0,1}n s.t. • f poly-time computable • 8 poly-time A Pr[A(f(X))2f-1(f(X))] = 1/n!(1) for XÃ{0,1}n x f(x) hard
OWFs & Cryptography secure protocols & applications digitalsignatures zero-knowledgeproofs private-key encryption statistical ZKarguments MACs [GMW86] statistically bindingcommitments pseudorandom functions [NY89] [BCC86] [GGM86] [N89] pseudorandomgenerators statistically hiding commitments target-collision-resistant hash functions (UOWHFs) [R90] [HILL90] [HNORV07] one-way functions
OWFs & Cryptography secure protocols & applications digitalsignatures zero-knowledgeproofs private-key encryption statistical ZKarguments MACs [GMW86] statistically bindingcommitments pseudorandom functions [NY89] [BCC86] [GGM86] [N89] pseudorandomgenerators statistically hiding commitments target-collision-resistant hash functions (UOWHFs) [R90] [HILL90] [HNORV07] one-way functions
Computational Entropy[Y82,HILL90,BSW03] Question: How can we use the “raw hardness” of a OWF to build useful crypto primitives? Answer (today’s talk): • Every crypto primitive amounts to some form of “computational entropy”. • One-way functions already have a little bit of “computational entropy”.
Entropy Def: The Shannon entropyof r.v. X is H(X) = ExÃX[log(1/Pr[X=x)] • H(X) = “Bits of randomness in X (on avg)” • 0 · H(X) · log|Supp(X)| • Conditional Entropy: H(X|Y) = EyÃY[H(X|Y=y)] X uniform onSupp(X) X concentratedon single point
Worst-Case Entropy Measures • Min-Entropy: H1(X) = minx log(1/Pr[X=x]) • Max-Entropy: H0(X) = log |Supp(X)| H1(X) · H(X) · H0(X)
Computational Entropy • A poly-time algorithm may “perceive” the entropy of X to be very different from H(X). • Example:a pseudorandom generator G: {0,1}m!{0,1}n • G(Um) is computationally indistinguishable from Un • But H(G(Um))·m.
Pseudoentropy Def [HILL90]: X has pseudoentropy¸ k iff there exists a random variable Y s.t. • Y ´c X • H(Y) ¸ k Interesting when k > H(X), i.e. Pseudoentropy > Real Entropy
OWFs & Cryptography secure protocols & applications digitalsignatures zero-knowledgeproofs private-key encryption statistical ZKarguments MACs [GMW86] statistically bindingcommitments pseudorandom functions [NY89] [BCC86] [GGM86] [N89] pseudorandomgenerators statistically hiding commitments target-collision-resistant hash functions (UOWHFs) [R90] [HILL90] pseudoentropy [HNORV07] one-way functions
Application of Pseudoentropy Thm [HILL90]:9 OWF )9 PRG Proof idea: OWF to discuss X with pseudoentropy ¸ H(X)+1/poly(n) repetitions X with pseudo-min-entropy ¸ H0(X)+poly(n) hashing PRG
Pseudoentropy from OWF • Intuition: for a 1-1 OWF f and XÃ{0,1}n • H(X|f(X))=0, but • 8 poly-time A Pr[A(f(X))=X] = 1/n!(1) = 1/2!(log n) ) X has “unpredictability entropy” !(log n) given f(X) [HLR07] • Challenges: • How to turn “unpredictability” into “pseudoentropy”? • When f not 1-1, unpredictability can be trivial.
Pseudoentropy from OWF • Thm[HILL90]: W=(f(X),H,H(X)1,…H(X)J)has pseudoentropy¸ H(W)+!(log n)/n, whereH : {0,1}n! {0,1}n is a certain kind of hash function, XÃ{0,1}n, JÃ{1,…,n}. • Thm[HRV10,VZ11]: (f(X),X1,…,Xn) has “next-bit pseudoentropy” ¸n+!(log n). • No hashing! • Total amount of pseudoentropy known & > n. • Get full !(log n) bits of pseudoentropy.
Next-bit Pseudoentropy • Thm[HRV10,VZ11]: (f(X),X1,…,Xn) has “next-bit pseudoentropy” ¸ n+!(log n). • Note: (f(X),X) easily distinguishable from every random variable of entropy > n. • Next-bit pseudoentropy: 9 (Y1,…,Yn) s.t. • (f(X),X1,…,Xi) ´c (f(X),X1,…,Xi-1,Yi) • H(f(X))+iH(Yi|f(X),X1,…,Xi-1) = n+!(log n).
Consequences • Simpler and more efficient construction of pseudorandom generators from one-way functions. • [HILL90,H06]: OWF f of input length n ) PRG G of seed length O(n8). • [HRV10,VZ11]: OWF f of input length n ) PRG G of seed length O(n3).
Unpredictability)Pseudoentropy[previous work] Assume: Z has unpredictability entropy ¸ k given Y (i.e. 8poly-time A Pr[A(Y)=Z]·2-k). • [Y82]: If k¼|Z|, then (Y,Z) ´c (Y,Uk) • [GL89,HLR07]: (Y,H,H(Z)) ´c (Y,H,Uk-!(log n)) • [I95,H05]: If |Z|=1, then 9 Z’ of “average min-entropy [DORS04]” k given X s.t. (X,Z) ´c (X,Z’) Coping with info-theoretic unpredictability of X given f(X)? • [HILL90] Use Leftover Hash Lemma to analyze prefix of (f(X),H,H(X)1,…H(X)J).
Pseudoentropy, Hardness of Sampling • Thm[VZ11]: Let (Y,Z) 2 {0,1}n£ {0,1}O(log n). Z has pseudoentropy¸ H(Z|Y)+k given YmThere is no probabilistic poly-time A s.t.D((Y,Z)||(Y,A(Y)) · k. [D = Kullback-Liebler Divergence] • Proof: variant of proofs of Impagliazzo’s Hardcore Lemma [I95,N95,H05,BHK09].
Pseudoentropy, Hardness of Sampling • Thm[VZ11]: Let (Y,Z) 2 {0,1}n£ {0,1}O(log n). Z has pseudoentropy¸ H(Z|Y)+k given YmThere is no probabilistic poly-time A s.t.D((Y,Z)||(Y,A(Y)) · k. • Cor[HRV10,VZ11]:(f(X),X1,…,Xn) has next-bit pseudoentropy n+!(log n).
OWFs & Cryptography secure protocols & applications digitalsignatures zero-knowledgeproofs private-key encryption statistical ZKarguments MACs [GMW86] statistically bindingcommitments pseudorandom functions [NY89] [BCC86] [GGM86] [N89] pseudorandomgenerators statistically hiding commitments target-collision-resistant hash functions (UOWHFs) next-bitpseudoentropy [HRV10,VZ11] [R90] [HNORV07] one-way functions
OWFs & Cryptography secure protocols & applications digitalsignatures zero-knowledgeproofs private-key encryption statistical ZKarguments MACs [GMW86] statistically bindingcommitments pseudorandom functions [NY89] [BCC86] [GGM86] [N89] pseudorandomgenerators statistically hiding commitments target-collision-resistant hash functions (UOWHFs) next-bitpseudoentropy [HRV10,VZ11] [HRVW09,HHRVW10] inaccessible entropy one-way functions
Inaccessible Entropy [HRVW09,HHRVW10] • Example: if h : {0,1}n! {0,1}n-k is collision-resistant and XÃ {0,1}n, then • H(X|h(X)) ¸ k, but • To an efficient algorithm, once it produces h(X), X is determined ) “accessible entropy” 0. • Accessible entropy ¿ Real Entropy! • Thm[HRVW09]: f a OWF ) (f(X)1,…,f(X)n,X) has accessible entropy n-!(log n). • Cf. (f(X),X1,…,Xn) has pseudoentropy n+!(log n).
Conclusion Complexity-based cryptography is possible because of gaps between real & computational entropy. “Secrecy”pseudoentropy > real entropy “Unforgeability”accessible entropy < real entropy
Research Directions • Formally unify inaccessible entropy and pseudoentropy. • OWF f : {0,1}n! {0,1}n) Pseudorandom generators of seed length O(n)? • More applications of inaccessible entropy in crypto or complexity.