160 likes | 438 Views
Procedure: Mass and momentum balance of the following control volume:. . x. x + dx. dx. von Kárman Equation for flat plates ( dp e / dx ≠ 0). For laminar or turbulent flows: in the turbulent case we take time-average velocity and pressure. Steady Flow. dx. Flow rate:.
E N D
Procedure: Mass and momentum balance of the following control volume: x x+dx dx von Kárman Equation for flat plates (dpe/dx≠0) • For laminar or turbulent flows: in the turbulent case we take time-average velocity and pressure. Mecânica dos Fluidos II Prof. António Sarmento - DEM/IST
Steady Flow dx • Flow rate: • Flow rate : von Kárman Equation forflat plates (dpe/dx≠0) • Mass balance: Mecânica dos Fluidos II Prof. António Sarmento - DEM/IST
dx von Kárman Equation for flat plates (dpe/dx≠0) • Mass balance : • x Momentum flow rate through y=δ: Mecânica dos Fluidos II Prof. António Sarmento - DEM/IST
Steady flow • Difference : von Kárman Equation for flat plates (dpe/dx≠0) • x momentum balance: Mecânica dos Fluidos II Prof. António Sarmento - DEM/IST
von Kárman Equation for flat plates (dpe/dx≠0) • x momentum balance: Mecânica dos Fluidos II Prof. António Sarmento - DEM/IST
p+1/2dp p p+dp τ0 von Kárman Equation for flat plates (dpe/dx≠0) • Forces along x: Mecânica dos Fluidos II Prof. António Sarmento - DEM/IST
von Kárman Equation for flat plates (dpe/dx≠0) • Final result: • Using the definition of d and δm: Mecânica dos Fluidos II Prof. António Sarmento - DEM/IST
von Kárman Equation for flat plates (dpe/dx≠0) • When dpe/dx=0 (dU/dx=0): • When dpe/dx=0 (dU/dx=0) we have m=a (a takes different values in laminar and turbulent flow): Boundary layer grows faster when Cf is higher Mecânica dos Fluidos II Prof. António Sarmento - DEM/IST
Blasius solution shows that with and a – constant along the BD Approximate solutions for laminar boundary layer for dpe/dx=0 Mecânica dos Fluidos II Prof. António Sarmento - DEM/IST
von Kárman Equation: but β- constant Integrating Approximate solutions for laminar boundary layer for dpe/dx=0 Mecânica dos Fluidos II Prof. António Sarmento - DEM/IST
Approximate solutions for laminar boundary layer for dpe/dx=0 • We have and • Remark: a and βdepend on the velocity profile, however δ/x, cfand CDdo not vary much with profile shape Mecânica dos Fluidos II Prof. António Sarmento - DEM/IST
Approximate solutions for laminar boundary layer for dpe/dx=0 Mecânica dos Fluidos II Prof. António Sarmento - DEM/IST
Blasius Solution for Laminar Boundary Layer Equation over a flat plate with dpe/dx=0 • Contents: • von Kármàn Equation; • Simplification for ; • Approximate solutions for laminar Boundary Layers with • zero pressure gradient . Mecânica dos Fluidos II Prof. António Sarmento - DEM/IST
Von Kárman Equation for a flat plate • Recommended Study Elements: • Sabersky – Fluid Flow: 8.6, 8.7 • White – Fluid Mechanics: 7.3, 7.4 Mecânica dos Fluidos II Prof. António Sarmento - DEM/IST
Problem on the Von Kármàn Equation Mecânica dos Fluidos II Prof. António Sarmento - DEM/IST