1 / 32

CSE474: Simulation and Modeling Generating Random Numbers

CSE474: Simulation and Modeling Generating Random Numbers. Mushfiqur Rouf nasarouf@gmail.com. Initial trials. Throwing dice Dealing out cards Drawing numbered balls Counting gamma rays Using digits in an expansion of p Picking numbers randomly from a phonebook

molimo
Download Presentation

CSE474: Simulation and Modeling Generating Random Numbers

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. CSE474: Simulation and ModelingGenerating Random Numbers Mushfiqur Rouf nasarouf@gmail.com CSE 474 Simulation Modeling | MUSHFIQUR ROUF nasarouf@gmail.com http://groups.google.com/group/cse474spring07/ http://faculty.bu.ac.bd/~rouf/cse474

  2. Initial trials • Throwing dice • Dealing out cards • Drawing numbered balls • Counting gamma rays • Using digits in an expansion of p • Picking numbers randomly from a phonebook • Using randomly pulsating vacuum tubes CSE 474 Simulation Modeling | MUSHFIQUR ROUF nasarouf@gmail.com http://groups.google.com/group/cse474spring07/ http://faculty.bu.ac.bd/~rouf/cse474

  3. Importance of U(0,1) • Easy generation • Generation of variates from all other distributions • Realization of random processes CSE 474 Simulation Modeling | MUSHFIQUR ROUF nasarouf@gmail.com http://groups.google.com/group/cse474spring07/ http://faculty.bu.ac.bd/~rouf/cse474

  4. Arithmetic Generators • Generated series is not random • Given the seed, the whole series is known. • Call it ‘pseudorandom’ • Benefits • Has low memory requirement • Fast CSE 474 Simulation Modeling | MUSHFIQUR ROUF nasarouf@gmail.com http://groups.google.com/group/cse474spring07/ http://faculty.bu.ac.bd/~rouf/cse474

  5. Good generator • Produce numbers that appear to be • Distributed uniformly • Uncorrelated • Fast and memory efficient • Reproduce • Debugging • Precise comparison of different model simulation results • Produce separate streams of numbers CSE 474 Simulation Modeling | MUSHFIQUR ROUF nasarouf@gmail.com http://groups.google.com/group/cse474spring07/ http://faculty.bu.ac.bd/~rouf/cse474

  6. Midsquare Method • Start with a four digit number • Square and take the middle four digits • Apparently scrambles well • But Degenerates to zero and stays there • Doing something strange may not be useful CSE 474 Simulation Modeling | MUSHFIQUR ROUF nasarouf@gmail.com http://groups.google.com/group/cse474spring07/ http://faculty.bu.ac.bd/~rouf/cse474

  7. Linear Congruantial Generators • Most common, most understood • Recursive formula Zi = (aZi-1 + c) (mod m) Ui = Zi/m Z0 is the seed modulus increment multiplier CSE 474 Simulation Modeling | MUSHFIQUR ROUF nasarouf@gmail.com http://groups.google.com/group/cse474spring07/ http://faculty.bu.ac.bd/~rouf/cse474

  8. All Zis are completely determined Objection 1: Pseudorandomness CSE 474 Simulation Modeling | MUSHFIQUR ROUF nasarouf@gmail.com http://groups.google.com/group/cse474spring07/ http://faculty.bu.ac.bd/~rouf/cse474

  9. Objection 2: Limited Values • Can take only the rational values • 0, 1/m, 2/m, … , (m-1)/m • P(Ui<1/m) = 0 • but should be > 0 • Solution: Use large m. • Might take only a fraction of these values. • Depends on a-c-m combination. CSE 474 Simulation Modeling | MUSHFIQUR ROUF nasarouf@gmail.com http://groups.google.com/group/cse474spring07/ http://faculty.bu.ac.bd/~rouf/cse474

  10. Objection 3: Looping behaviour • If Z100 = Z50 then Z101 = Z51 • So a cycle starts. • Cycle length is called ‘period’ • There are only m possible values. • Max possible period is m. • If an LCG with “full period” has period = m • Period depends on a-c-m CSE 474 Simulation Modeling | MUSHFIQUR ROUF nasarouf@gmail.com http://groups.google.com/group/cse474spring07/ http://faculty.bu.ac.bd/~rouf/cse474

  11. LCG Full period • Iff all of the following hold: • m, c are relatively prime • If prime p divides m, then p divides a-1 • If 4 divides m, then 4 divides a-1 • Multiple Streams Support • If streams of size 100000 needed, • Use seeds Z0, Z100000, Z200000, … CSE 474 Simulation Modeling | MUSHFIQUR ROUF nasarouf@gmail.com http://groups.google.com/group/cse474spring07/ http://faculty.bu.ac.bd/~rouf/cse474

  12. Mixed LCG • c > 0 • To avoid explicit division, use m = 2b and utilize integer overflow • Optimized ‘a’ a = 2l + 1 • Then the multiplication is just shift and add: Zi = 2lxZi–1 + Zi–1 • But has poor statistical properties CSE 474 Simulation Modeling | MUSHFIQUR ROUF nasarouf@gmail.com http://groups.google.com/group/cse474spring07/ http://faculty.bu.ac.bd/~rouf/cse474

  13. Multiplicative LCG • c = 0 • Cannot have full period since m, c cannot be relatively prime. • Period m – 1 possible • To avoid explicit division: m = 2b • Period is at most 2b–2 • Then we don’t know how uniform the numbers are • NOT a good idea CSE 474 Simulation Modeling | MUSHFIQUR ROUF nasarouf@gmail.com http://groups.google.com/group/cse474spring07/ http://faculty.bu.ac.bd/~rouf/cse474

  14. Multiplicative LCG • “Prime modulus multiplicative LCG” PMMLCG • Use largest prime < 2b • Example: 231–1 • a is ‘primitive element modulo m’ • am–1 – 1is divisible by m • No smaller power of a has this property • Period = m – 1 CSE 474 Simulation Modeling | MUSHFIQUR ROUF nasarouf@gmail.com http://groups.google.com/group/cse474spring07/ http://faculty.bu.ac.bd/~rouf/cse474

  15. Generalization of LCG Zi = g(Zi-1,Zi-2, …) (mod m) • Quadratic Congruential Generator g = a’Zi-12 +aZi-12 + c • a’ = a = 1, c = 0, m is a mercenary • Multiple Recursive Generator g(Zi-1,Zi-2, …) = a1Zi-1 + a2Zi-2 + … + aqZi-q • Huge periods ~ mq – 1 • Fibonacci Generator Zi = (Zi-1 + Zi-2) (mod m) CSE 474 Simulation Modeling | MUSHFIQUR ROUF nasarouf@gmail.com http://groups.google.com/group/cse474spring07/ http://faculty.bu.ac.bd/~rouf/cse474

  16. Composite Generators • Combine two or more separate generators • Longer period, better statistical behavior • Shuffling • Use a second LCG to shuffle output • Shuffling bad LCG by another bad LCG may produce better results. • Little to gain by shuffling a good LCG CSE 474 Simulation Modeling | MUSHFIQUR ROUF nasarouf@gmail.com http://groups.google.com/group/cse474spring07/ http://faculty.bu.ac.bd/~rouf/cse474

  17. Empirical Tests • Uniformity Test fj= Number of Ui s in interval j • For large n it will have approximately a chi-sq distribution with k–1 degrees of freedom. • Reject null hypothesis “Uis are U(0,1)” if CSE 474 Simulation Modeling | MUSHFIQUR ROUF nasarouf@gmail.com http://groups.google.com/group/cse474spring07/ http://faculty.bu.ac.bd/~rouf/cse474

  18. Empirical Tests • Serial Test • Generalization of chi-square test to higher dimensions • Non overlapping d-tuples U1 = (U1, U2, …, Ud), U2 = (Ud+1, Ud+2, …, U2d), …should be distributed uniformly in d-dimensional hipercube [0,1]d. • χ2 will have an approximate chi-square distribution with kd – 1 degrees of freedom. CSE 474 Simulation Modeling | MUSHFIQUR ROUF nasarouf@gmail.com http://groups.google.com/group/cse474spring07/ http://faculty.bu.ac.bd/~rouf/cse474

  19. Empirical Tests • Runs-up test • Run-up: a “maximal” monotonically increasing subsequence • ri = number of runs up of length i <= 5 • r6 = number of runs up of length >= 6 • For large n, R will have approximate chi-square distribution with 6 df. CSE 474 Simulation Modeling | MUSHFIQUR ROUF nasarouf@gmail.com http://groups.google.com/group/cse474spring07/ http://faculty.bu.ac.bd/~rouf/cse474

  20. Tests • Empirical Tests • Only local test; for only that segment of the cycle. • Examines the actual random numbers to be used in simulation • Theoretical Tests • Global test; for the whole cycle. • Cannot examine a particular segment CSE 474 Simulation Modeling | MUSHFIQUR ROUF nasarouf@gmail.com http://groups.google.com/group/cse474spring07/ http://faculty.bu.ac.bd/~rouf/cse474

  21. Crystalline structure • Random numbers mainly fall in planes • Overlapping d-tuples(U1, U2, …, Ud), (U2, U3, …, Ud+1), … fall in a small number of d – 1 dimensional hyper planes passing through the d-dimensional hypercube • If two such planes are far apart the generator will perform poorly CSE 474 Simulation Modeling | MUSHFIQUR ROUF nasarouf@gmail.com http://groups.google.com/group/cse474spring07/ http://faculty.bu.ac.bd/~rouf/cse474

  22. Inverse Transform • How to generate X ~ F? • Generate U ~ U(0, 1) • Return X = F–1(U) • P(X<=x) = P(F–1(U)<=x) = P(U<=F(x)) = F(x) CSE 474 Simulation Modeling | MUSHFIQUR ROUF nasarouf@gmail.com http://groups.google.com/group/cse474spring07/ http://faculty.bu.ac.bd/~rouf/cse474

  23. Inverse Transform • Intuitive explanation F(x) CSE 474 Simulation Modeling | MUSHFIQUR ROUF nasarouf@gmail.com http://groups.google.com/group/cse474spring07/ http://faculty.bu.ac.bd/~rouf/cse474

  24. Inverse Transform • Discrete Case: • Generate U ~ U(0, 1) • Determine the smallest integer I such that U<=F(xI). Return X = xI • P(X = xi) = P[F(xi-1) < U <= F(xi)]=F(xi) – F(xi–1) = p(xi) CSE 474 Simulation Modeling | MUSHFIQUR ROUF nasarouf@gmail.com http://groups.google.com/group/cse474spring07/ http://faculty.bu.ac.bd/~rouf/cse474

  25. Inverse Transform • Can handle mixed distributions with • Discrete, • Continuous and • Flat components • X = min{x: F(x) >= U} CSE 474 Simulation Modeling | MUSHFIQUR ROUF nasarouf@gmail.com http://groups.google.com/group/cse474spring07/ http://faculty.bu.ac.bd/~rouf/cse474

  26. Inverse Transform • Disadvantages • F–1 might not be found in a closed form • Use numerical methods • May not be the fastest way • Advantages • Facilitates variance reduction techniques • Easily generates truncated distributions • Useful for generating i-th order statistics (using beta distribution) CSE 474 Simulation Modeling | MUSHFIQUR ROUF nasarouf@gmail.com http://groups.google.com/group/cse474spring07/ http://faculty.bu.ac.bd/~rouf/cse474

  27. Composition • Target distribution is a ‘convex’ combination of other distributions • Generate a positive random integer J such that P(J = j) = pj • Return X with distribution Fj • Geometric interpretation • Select an area • Select from that distribution CSE 474 Simulation Modeling | MUSHFIQUR ROUF nasarouf@gmail.com http://groups.google.com/group/cse474spring07/ http://faculty.bu.ac.bd/~rouf/cse474

  28. Convolution • X = Y1 + Y2 + … + Ym • Don’t mix up with ‘Composition’ • Generate Y1, Y2, …, Ym IID • Return X = Y1 + Y2 + … + Ym • P(X<=x) = P(Y1 + Y2 + … + Ym <= x) = F(x) CSE 474 Simulation Modeling | MUSHFIQUR ROUF nasarouf@gmail.com http://groups.google.com/group/cse474spring07/ http://faculty.bu.ac.bd/~rouf/cse474

  29. t(x) f(x) Acceptance – Rejection • A less direct approach • Requires a function t that ‘majorizes’ f, ie, t(x) >= f(x) for all x • Define r(x)=t(x)/c, a density function. CSE 474 Simulation Modeling | MUSHFIQUR ROUF nasarouf@gmail.com http://groups.google.com/group/cse474spring07/ http://faculty.bu.ac.bd/~rouf/cse474

  30. t(x) f(x) Acceptance – Rejection • Generate Y having density r • Generate U~U(0, 1), independent of Y • If U <= f(Y)/t(Y), return X = YElse goto step 1 Intuitively, how does it work? CSE 474 Simulation Modeling | MUSHFIQUR ROUF nasarouf@gmail.com http://groups.google.com/group/cse474spring07/ http://faculty.bu.ac.bd/~rouf/cse474

  31. t(x) f(x) Acceptance – Rejection • Choice of t • Calculations must be very efficient • Probability of acceptance in step 3 is 1/c. So We need t with small c. • Conflicting • Tighter functions are more complicated. CSE 474 Simulation Modeling | MUSHFIQUR ROUF nasarouf@gmail.com http://groups.google.com/group/cse474spring07/ http://faculty.bu.ac.bd/~rouf/cse474

  32. Acceptance – Rejection t(x) t(x) f(x) f(x) CSE 474 Simulation Modeling | MUSHFIQUR ROUF nasarouf@gmail.com http://groups.google.com/group/cse474spring07/ http://faculty.bu.ac.bd/~rouf/cse474

More Related