1 / 20

Functions, Sequences, and Sums

Functions, Sequences, and Sums. 2.3 Functions. Introduction. Function: task, subroutine, procedure, method, mapping, … E.g. Find the grades of student x. int findGrades (string name){ //go to grades array, //find the name, and find the corresponding grades

monifa
Download Presentation

Functions, Sequences, and Sums

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Functions, Sequences, and Sums

  2. 2.3 Functions Introduction • Function: task, subroutine, procedure, method, mapping, … • E.g. Find the grades of student x. intfindGrades(string name){ //go to grades array, //find the name, and find the corresponding grades … return grades; } Adams A Chou B Goodfriend C Rodriguez D Stevens F

  3. 2.3 Functions • We can use a formula or a computer program to define a function. Example: f(x) = x + 1 described as: intincreaseByOne(int x){ x = x + 1; return x; } DEFINITION 1 Let A and B to be nonempty sets. A function f from A to B is an assignment of exactly one element of B to each element of A. We write f(a) = b if b is the unique element of B assigned by the function f to the element a of A. If f is a function from A to B, we write f: A → B.

  4. 2.3 Functions • For each function, we specify its domain, codomain and the mapping of elements of the domain to elements in the codomain • Two functions are said to be equal if they have the same domain, codomain, and the map elements of their common domain to the same elements of their common codomain • A function is differ by changing its domain, codomain or the mapping of elements DEFINITION 2 If f is a function from A to B, we say that A is the domain of f and B is the codomain of f. If f(a) = b, we say that b is the image of a and a is a preimage of b. The range of f is the set of all images of elements of A. Also, if f is a function from A to B, we say that fmapsA to B.

  5. 2.3 Functions • What are the domain, codomain, and range of the function that assigns grades to students described in the slide 2? Solution: domain: {Adams, Chou, Goodfriend, Rodriguez, Stevens} codomain: {A, B, C, D, F} range: {A, B, C, F}

  6. Let f be the function that assigns the last two bits of a bit string of length 2 or greater to that string. For example, f(11010) = 10. Then, the domain of f is the set of all bit strings of length 2 or greater, and both the codomain and range are the set {00,01,10,11}

  7. What is the domain and codomain of the function int floor(real float){…}? Solution: domain: the set of real numbers codomain: the set of integer numbers

  8. 2.3 Functions • Example: Let f1and f2be functions from R to R such that f1(x) =x2 and f2 (x) = x – x2. What are the functions f1 + f2 and f1f2 ? Solution: (f1 + f2 )(x) = f1(x) + f2 (x) = x2 + (x – x2) = x (f1f2 ) (x) = f1(x) f2 (x) = x2(x – x2) = x3 –x4 DEFINITION 3 If f1and f2be functions from A to R. Then f1 + f2 and f1 f2 are also functions from A to R defined by (f1 + f2 )(x) = f1(x) + f2 (x) (f1f2) (x) = f1(x) f2 (x)

  9. 2.3 Functions One-to-One and Onto Functions • a b(a ≠ b → f(a) ≠ f(b)) (If it’s a different element, it should map to a different value.) • Example: Determine whether the function f from {a,b,c,d} to {1,2,3,4,5} with f(a) = 4, f(b) = 5, f(c) = 1 and f(d) = 3 is one-to-one. a 1 b 2 c 3 d 4 5 Solution: Yes. DEFINITION 5 A function f is said to be one-to-one, or injective, if and only if f(a) = f(b) implies that a = b for all a and b in the domain of f. A function is said to be an injection if it is one-to-one. (every element in the range is a unique image for element of A – all image have at most one arrow or none)

  10. 2.3 Functions DEFINITION 7 A function f from A to B is called onto, or surjective, if and only if for every element bB there is an element aA with f(a) = b. A function f is called a surjection if it is onto. Co-domain = range • Example: Let f be the function from {a,b,c,d} to {1,2,3} defined by • f(a) = 3, f(b) = 2, f(c) = 1, and f(d) = 3. Is f an onto function? a 1 b 2 c 3 d Solution: Yes. • Example: Is the function f(x) = x2 from the set of integers to the set of integers onto? Solution: No. There is no integer x with x2 = -1, for instance.

  11. 2.3 Functions a. One-to-one, b. Onto, c. One-to-one, d. neither d. Not a Not onto not one-to-one and onto function a 1 a a 1 a 1 1 b 2 b 1 b 2 b 2 a 2 c 3 c 2 c 3 c 3 b 3 4 d 3 d 4 d 4 c 4 DEFINITION 8 The function f is a one-to-one correspondence or a bijection, if it is both one- to-one and onto.

  12. 2.4 Sequences and Summations Sequences • A sequence is a discrete structure used to represent an ordered list • Example: 1,2,3,5,8 1,3,9,27,81,…,30,… • We use the notation {an} to denote the sequence. • Example: Consider the sequence {an}, where an = 1/n. The list of the terms of this sequence, beginning with a1, namely a1, a2, a3, a4, …, starts with 1, 1/2, 1/3, 1/4, … DEFINITION 1 A sequence is a function from a subset of the set of integers (usually either the set {0,1,2,…} or the set {1,2,3,…}) to a set S. We use the notation an to denote the image of the integer n. We call an a term of the sequence.

  13. 2.4 Sequences and Summations It is analogue of the exponential function f(x) = arx • Example: The following sequence are geometric progressions. {bn} with bn = (-1)n starts with 1, -1, 1, -1, 1, … initial term: 1, common ratio: -1 {cn} with cn = 2*5n starts with 2, 10, 50, 250, 1250, … initial term: 2, common ratio: 5 {dn} with dn = 6 *(1/3)n starts with 6,2, 2/3, 2/9, 2/27, … initial term: 6, common ratio: 1/3 DEFINITION 2 A geometric progression is a sequence of the form a, ar, ar2, …, arn, … where the initial term a and the common ratio r are real numbers.

  14. 2.4 Sequences and Summations It is analogue of the linear function f(x) = dx+a • Example: The following sequence are arithmetic progressions. {sn} with sn = -1 + 4n starts with -1, 3, 7, 11,… initial term: -1, common difference: 4 {tn} with tn = 7 – 3n starts with 7, 4, 1, -2, … initial term: 7, common difference: -3 DEFINITION 3 A arithmetic progression is a sequence of the form a, a + d, a + 2d, …, a + nd, … where the initial term a and the common difference d are real numbers.

  15. 2.4 Sequences and Summations • Example: Find formulae for the sequences with the following first five terms (a). 1, 1/2, 1/4, 1/8, 1/16 Solution: an = 1/2n (b). 1, 3, 5, 7, 9 Solution: an = (2n )+ 1 (c). 1, -1, 1, -1, 1 Solution: an = (-1)n

  16. 2.4 Sequences and Summations Summations • The sum of the terms from the sequence am + am+1, …, an can be expressed as , Or Where m is the lower limit, n is the upper limit, and j is the index of the summation • Example: Express the sum of the first 100 terms of the sequence {an}, where an = 1/n for n = 1,2,3, …. Solution:

  17. 2.4 Sequences and Summations • What is the value of ? Solution: = 1 + 4 + 9 + 16 + 25 = 55 • Expressed with a for loop: int sum = 0; for (inti=1; i<=5; i++) { sum = sum +i*i; }

  18. 2.4 Sequences and Summations • What is the value of the double summation ? Solution: = = = 6 + 12 + 18 + 24 = 60

  19. Sequences and Summations • Expressed with two for loops: int sum1 = 0; int sum2 = 0; for (inti=1; i<=4; i++){ sum2 = 0; for (intj=1; j<=3; j++){ sum2 = sum2 + i*j; } sum1 = sum1 + sum2; }

  20. ANY QUESTIONS??? • Refer to chapter 2 of the book for further reading

More Related