1 / 32

MHD induction & dynamo

ENS. LYON. MHD induction & dynamo. Laboratoire de Physique Ecole Normale supérieure Lyon (France) Jean-François Pinton. pinton@ens-lyon.fr http://perso.ens-lyon.fr/jean-francois.pinton. Collaboration with. Philippe Odier, Mickael Bourgoin , Romain Volk

monifa
Download Presentation

MHD induction & dynamo

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. ENS LYON MHDinduction & dynamo Laboratoire de Physique Ecole Normale supérieure Lyon (France) Jean-François Pinton pinton@ens-lyon.fr http://perso.ens-lyon.fr/jean-francois.pinton

  2. Collaboration with Philippe Odier, Mickael Bourgoin, Romain Volk VKG : Stanislas Kripchenko, Petr Frick VKS : François Daviaud, Arnaud Chiffaudel, Stephan Fauve, François Petrelis, Louis Marié Numerics : Yanick Ricard, Yannick Ponty Hélène Politano

  3. ENS LYON • Motivations and approach: • Non-linear physics, fluid turbulence • Induction mechanisms high Rm, low Pm • Dynamo • - `non - analytical’ dynamos? • - bifuraction in the presence of noise • - saturation and dynamical regime Dynamo fields are self-tailored, and we wish we could control the flow !

  4. Question addressed : B-measurement In situ 3D flow Liquid metal : Ga, Na Mean induction ? Fluctuations ?

  5. Induction in mhd flows B-eq. only : field is too small to modify imposed u B0 imposed by external coils / currents Boundary conditions : flow + vessel + outside

  6. Equations & parameters Liquid Gallium / Sodium Turbulent flows Weak applied field Strong, non-linear induction

  7. Measurement of induction in VK flowsGallium at ENS-LyonSodium at CEA-Cadarache • M. Bourgoin, et al., Phys. Fluids, 14 (9), 3046, (2001). • L. Marie et al., Magnetohydrodynamics, 38, 163, (2002). • F. Pétrélis et al., Phys. Rev. Lett., 90(17), 174501, (2003). • M. Bourgoin et al., Magnetohydrodynamics, in press, (2004).

  8. H=2R 3D Hall probe Velocity feed-back Velocity feed-back Pressure probe Thermocouple Power Power B0// B0 R Motor 2 Motor 1 Von Karman flows

  9. VKS1 experimentat CEA-Cadarache

  10. W R H=2R W von Karman counter-2D(differential rotation) poloidal Toroidal

  11. W R H=2R W Omega effect Twisting of mag field lines by shear B1q induit saturation linear

  12. Von Karman 1D(helicity) W=0 Hz R H=2R W x y z Vitesse azimutale Vitesse poloïdale z (m) mesures LDV (L. Marié, CEA) x (m) x (m)

  13. W=0 Hz R H=2R W « alpha » effect VKG Na, Cadarache Ga, Lyon saturation quadratic BIz quadratic Rm

  14. W=0 Hz R R R H=2R W « alpha » effect R Parker’s stretch and twist mechanism

  15. Turbulent fluctuations Bz (G) applied B0 mean induced bz time (s) histogram Bind,z (G) time (s)

  16. Turbulent fluctuations br 0 - 1 bθ 4 10 bz - 11/3 2 10 ~ b² 0 10 Ω Ω/10 0 1 2 10 10 10 f (Hz) 3 particular regions

  17. Mean induction:an iterative approach (assuming stationarity)real boundary condition An iterative study of time independent induction effects in mhd M. Bourgoin, P. Odier, J.-F. Pinton and Y. Ricard, Physics of Fluids, in press (2004).

  18. Iterative approach Induction in the presence of an applied field avec + C.L.

  19. Solving for B, I, F CL Neumann : (CL insulating)

  20. Ex.1: w-effect in VK Potentiel électrique

  21. Ex.1: w-effect in VK saturation linéaire

  22. Ex.2: a-effect in VK R

  23. Ex.2: a-effect in VK

  24. Ex.2: a-effect in VK

  25. Ex.3: boundary effect in VK

  26. Turbulent fluctuations : a mixed LES - DNS schemeperiodic boundary condition Simulation of induction at low magnetic Prandtl number Y. Ponty, H. Politano and J.-F. Pinton:, Physal Review Letters, in press, (2004).

  27. Turbulence : coupled LES-DNS Include turbulence, but : viscous dissipative scale : h = L/Re3/4 magnetic ohmic scale : hB = L/Rm3/4 PSD u B 1/h 1/L 1/hB LES DNS

  28. Taylor-Green vortex flow • pseudo spectral code 1283 • Pm = 0.001, Rm=7, Rl=100 • Chollet-Lesieur cutoff • h(k,t) ≈ (a + b(k/Kc)8)sqrt(E(Kc,t)/Kc)

  29. TG, local induction

  30. TG, global mode VKS exp. TG simul Local

  31. TG, global mode VKS exp. TG simul B-energy

  32. In progress VKS dynamo Turbulence & induction Earth dynamo

More Related