1 / 49

The BAIKAL Neutrino Telescope: Results and Plans

The BAIKAL Neutrino Telescope: Results and Plans. 19 th ERCS, Florence, Italy,September 3 rd , 2004. Ralf Wischnewski DESY-Zeuthen. O(km) long muon tracks. Electromagnetic & hadronic cascades.  5- 15 m. ~ 5 m. CC  e   + Neutral Current. Charged Current (CC)  .

monifa
Download Presentation

The BAIKAL Neutrino Telescope: Results and Plans

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. The BAIKAL Neutrino Telescope: Results and Plans 19th ERCS, Florence, Italy,September 3rd, 2004 Ralf WischnewskiDESY-Zeuthen

  2. O(km) long muon tracks Electromagnetic & hadronic cascades  5-15 m ~ 5 m CCe + Neutral Current Charged Current (CC)  - Good directionality by Cherenkov timing - Poor energy resolution direction determination by Cherenkov light timing - Good energy resolution - Bad pointing HE Neutrino Detection: Muons and “Cascades” R.Wischnewski ECRS2004

  3. The case for “All flavor” detection (1)  - Oscillation transfers the canonical e::=1:2:0 at source(e.g. from +- decay) to e::=1: 1: 1 at earth  50 % of signal  are ‘lost’ !  Catch all flavours (2) Earth is opaque for ‘upward’  at E >> PeV. But: regenerate via -decay and pile up at transparency E-threshold, i.e. do not ‘disappear’ .

  4. Sky coverage in Gal.Coordinates Lake Baikal Lake Baikal (and Mediterranean...) Visibility: below local horizon - white = 100% visibility - black = „blind region“ South Pole South Pole (AMANDA) = galactic center The case for >1 Uw/Ice - Telescopes • Complete sky coverage

  5. Lake Baikal South Pole The case for >1 Uw/Ice - Telescopes • Complete sky coverage (2) Complementarity of detectors • Optical medium: scattering vs. no-scatt. • Effective volume: contained vs. external • Pattern recognition & filtering criteria

  6. Outline • NT-200 design + history • Results: - Atm. Neutrinos, WIMPs, Monoples, - Cascades  AP neutrinos, muons • Physics upgrade to NT-200+ to be finished in April 2005 R.Wischnewski ECRS2004

  7. Collaboration Russia – Germany - Institute of Nuclear Research, Moscow - Moscow State University - DESY Zeuthen - Irkutsk State University - Nishni Novgorod State Technical University - State Marine Technical University, St.Petersburg - Kurchatov Institute, Moscow - JINR, Dubna ~45 authors R.Wischnewski ECRS2004

  8. The Site 3600 m • 4 cables x 4km to shore. • 1070m depth 1366 m NT-200

  9. Winches used for deployment • operations  Ice as a natural deployment platform • Ice stable for 6-8 weeks/year: • Maintenance & upgrades • Test & installation of new equipment • Operation of surface detectors (EAS, acoustics,… )

  10. The Ice Camp (4km offshore) R.Wischnewski ECRS2004

  11. -8 strings: 72m height • - 192 optical modules • pairwise coincidence •  96 space points • calibration with N-lasers • timing ~ 1 nsec • Dyn. Range ~ 1000 pe Effective area: 1 TeV ~2000 m² Eff. shower volume: 10TeV ~0.2Mt Quasar PMT: d = 37cm Height x  = 70m x 40m, Vgeo=105m3= 0.1Mton The NT-200 Telescope R.Wischnewski ECRS2004

  12. Optical Module – Pair (Coincidence) R.Wischnewski ECRS2004

  13. 8 Strings on a Heptagon frame d=40m 21.5 m long arms allow for separate String manipulation N.B.: Flexiblity - additional (external) strings can be deployed independently (and re-positioned) at any place. R.Wischnewski ECRS2004

  14. ...and retrieval one year later. Final deployment of the Heptagon … NT-36, April 1993 R.Wischnewski ECRS2004

  15. Absorption cross section, m-1 Scattering cross section, m-1 Baikal Baikal , nm , nm Optical Properties FreshWater  no K40 BG In-situ measurements over many years Scatt. Length (geom) ~ 30-50 m cos ~ 0.85-0.9 Abs. Length: 22 ± 2 m 2001: Cross calibration with NEMO/ANTARES Latt-device

  16. One of the first neutrino events recorded with the 1996 four-string version NT-96 of the Telescope • 1998 – NT-200 commissioned 06.04.98(192 PMTs at 8 strings) • Start full Physics program • since 1998: Routine operation 4-string stage (1996) Baikal - History • Since 1980 – Site tests and early R&D started • 1989/90 - Proposal NT-200, start construction • 1993 – NT-36started 13.4.93 (36 PMTs at 3 strings) • The First Underwater Array ever built • 3-dimensional Muon reconstruction • Verify BG-suppression & check MC/Water/.. • First 2 Neutrino Candidates R.Wischnewski ECRS2004

  17. Ai, ti atm. m Time difference (dt = t52-t53) Amplitude (Chan 12) Reconstructed m’s : Cos(zenith) distribution vs. Corsika dt, ns 1. 0.2 cos (  ) Photoelectrons Atmospheric muons: Calibration Beam R.Wischnewski ECRS2004

  18. Selected Results • Low energy phenomena • - Atmospheric neutrinos • - Neutrino from WIMP annihilation • Search for exotic particles • - Magnetic monopoles • High energy phenomena • - Diffuse neutrino flux • - Neutrinos from GRB • - Prompt muons and neutrinos R.Wischnewski ECRS2004

  19. Data samples NT-200 - 1998-1999: 502 livetime days (Apr.98-Feb.00) - 1998-2000: 780 livetime days (Apr.98-Feb.01) (this work ) - 2001-2002: in progress - earlier results: for prototype NT-96, ... R.Wischnewski ECRS2004

  20.  ~ 3° Skyplot (galactic coordinates) cos (  ) Atmospheric Muon-Neutrinos • 3-dimensional track reconstruction • high BG suppression •  84 events in 1998+99 Soon to come: - a high statistics neutrino sample („looser criteria“) for Point-Source Search. - Muon-Neutrino GRB analysis Thresh.~ 15 GeV BG dominated bin R.Wischnewski ECRS2004

  21. Detection area, m2  +   b + b C +  +  cos (  )  W + + W - WIMP Neutrinos from the Center of the Earth • Tailored Vertical Track Reconstruction (single string) • Effective Area > 103 m2 (after all cuts)

  22. no osc. osc. WIMP Search Limit on excess neutrino induced upwardmuon flux 90% c.l. limits from the Earth ( 502 days NT-200 livetime, E> 10 GeV ) 502 days livetime NT-200 (98+99) MC: Bartol-96 24 evts - experiment 36.6 evts - prediction w/o oscillations 29.7 evts - prediction w/ oscillations

  23. Monopole limit (90% C.L.) 780 livedays Parker Nhit distribution: MC  data Nhit Search for fast Monopoles (b > 0.8) Ng monop(l) = n2 (g/e)2 Ngm(l) = 8300 Ngm(l) g = 137/2, n = 1.33 Bright light source: 8300 x muon • Monopole selection criteria: • hit channel multiplicity: Nhit> 35ch, • upward track:S(zi-z)(ti-t)/(stsz) > 0.45 , q > 100o • Background : atmospheric muons R.Wischnewski ECRS2004

  24. Search for Slow Massive Monopoles(10-5 < b < 10-3) NT-200 – capable to detect massive bright objects (GUT-monopoles, nuclearites, Q-balls …): Monopole Trigger: Nlocal>4 within dt=500msec Selection: Nch>1 with Nlocal>14 scat=0.17s0 /b2, 10-5<b<10-3 M+p M+e+ (+p…),Ng~105 Magnetic monople Flux limit Magnetic monopole visibility boundaries R.Wischnewski ECRS2004

  25. NT-200 NT-200  necascades large effective volume Allowed by excellent scatt scatt=30-50m Radius, m Search for High Energy Cascades Look for upward moving light fronts. Signal: isolated cascades from neutrino interactions Background : Bremsshowers from h.e. downward muons Final rejection of background by „energy cut“ (Nhit) NT-200 is used to watch the volume below for cascades.  („BG“)

  26. NT-200  large effective volume Search for High Energy Cascades • Physics topics: • HE cascades from • e  - NC/CC • Diffuse astroph.flux • GRB correlated flux • HE atmospheric muons • ( the „BG“ to ‘s ) • Prompt  • Exotic  • - ... NT-200 is used to watch the volume below for cascades.  („BG“)

  27. g=1.5 2 Data + MC 2.5 matm cut Hard spectra pile up in the “energy parameter” N hit Fn = AE-g Shape of signal in Nhit distribution (g=1.5,2.0,2.5) Selecting HE Cascades Showers along

  28. AMANDA II Vgeo (NT-200) Diffuse Flux ne, nt, n Limit The 90% C.L. “all flavour” Limit from NT-200 (780 days) on the DIFFUSE NEUTRINO FLUX Assuming ne  n nt= 1  1  1 at Earth ( 1  2  0 at source) + for a =2 spectrum Ф~ E-2 (10 TeV < E < 104 TeV) E2 Фn< 1.0 ·10-6GeV cm-2 s-1 sr-1 (Baikal 2004) E2 Фn< 0.86 ·10-6GeV cm-2 s-1 sr-1(AMANDA-II 2004) Effective volume vs. E 90% C.L. Limit via W-RESONANCE production ( E = 6.3 PeV, s = 5.3 ·10-31 cm2 ) Фne < 4.2 · 10-20 (cm2 · s · sr ·GeV )-1 (Baikal 2004) Фne < 5.0 · 10-20 (cm2 · s · sr ·GeV )-1 (AMANDA 2004) Veff > 1 Mton at 1 PeV

  29. Experimental limits + theoretical predictions Diffuse Flux Limits + Models • Models already ruled out by the experiments • SDSS - Stecker et al.92 • SS - Stecker, Salamon96 • SP - Szabo, Protheroe92 • (Models/Exp. are rescaled for 3 flavours) Telescopes attack Models agressively.

  30. Search for ’s correlated with GRBs BATSE-GRBs vs. HE-Cascades event sample. GRB - Prospects: We expect better sensitivity for the muon event sample. Analysis in progress. April 1998 - February 2000: Ntot= 722 BATSE evts NT-200:CascadeCuts (Nhit>10 & tmin>-10 ns) & tBATSE-100 s < t < tBATSE+100 s prelim. prelim. Data consistent with expected at-BG  90% C.L. differential flux limits 1 PeV R.Wischnewski ECRS2004

  31. Neutrinos -nm, ne: cascades (CC, NC) AnE-2.6, E<Eb=3 105 GeV Fn= An Eb0.4 E -3,E>Eb=3 105 GeV Muons: cascades (e+e-, brem, ph.-nucl.) Fm=AmE-2.6 prelim. Prompt atmospheric ’s and muonsBG source for neutrino telescopes Production - decays of short-lived particles (L, D, …) Fm~ Fn - isotropic for E < 107 GeV Predictions: ZHV - E.Zas, F.Halzen, R.Vazquez-93 RVS - O.Ryazhskaya, L.Volkova, O.Saavedra-02 QGSM, RQPM - E.Bugaev et al.-89 TIG - M.Thunman, G.Ingelman, P.Gondolo-96 GGV - G.Gelmini, P.Gondolo, G.Varieschi-02 (hep-ph/0209111) Baikal R.Wischnewski ECRS2004

  32. Limits to HE Muon Flux • Any HE muon model spectrum can be tested by the selected HE Cascade event sample. • Example: • “Exotic Muons” as discussed in some talks at this meeting • (curve “a” and “b”). • a detailed limit calculation for these “predictions” is in progress. The limit for E-2 spectrum shows we have rejection model power. Flux prediction and flux limits

  33. NT-200 140 m 110100 1000PeV Aim: Improve sensitivity to cascades with sparse instrumentation. Upgrade to NT-200+ 41523 40Mton 36 additional PMTs on 3 far ‘strings‘  4 times better sensitivity !

  34. NT-200+ Much improved cascade coordinates (+ energy ) reconstruction

  35. NT-200 140 m NT-200+ NT - 200+ as subunit for a Gton scale detector For High Energy Cascades: A single small string replacing the NT-200 central core reduces Veff less than x3 for E>100TeV.  Short strings as a subunit for a Gton scale detector

  36. A future Gigaton (km3) Detector in Lake Baikal. Sparse instrumentation: 91 strings with 12 OM = 1308 OMs  effective volume for 100 TeV cascades ~ 0.5 -1.0 km³!  muon threshold between 10 and 100 TeV

  37. NT-200+ Status 2004: - Two outer strings are installed 2.3 104 common events taken during 364 h life time (0.017 Hz) - New cable to shore(4km underwater) - DAQ system redesigned - MBit-DSL shore connection: x100 bandwidth - Embedded Linux PC’s and Ethernet underwater (fast trigger Level 0 possible) - Remote Experiment Control from Moscow/... 2005: - NT-200+ will be completed

  38. NT-200+ DAQ-Upgrade, 3/2004 • Linux and Ethernet “go underwater” for the new Baikal-DAQ: • - 3 Baikal-spheres with first PCs ready for deployment (left) • - Mounting the central trigger/DAQ underwater system (right) R.Wischnewski ECRS2004

  39. Summary - The Baikal Telescope is successfully running since 10 years - strong in HE-diffuse search (cascades): “Mton-detector” - good GRB-sensitivity - relevant other results: Magnetic Monopoles, WIMPs, atm.  - complementary to AMANDA (sky, optical, pattern-reco, …) - aggressive upgrade to NT-200+ in 2005: improve the HE cascade sensitivity by 2 ...4 - also: ideas on a future Gigaton Volume Detector (km3) R.Wischnewski ECRS2004

  40. BAIKAL will for a few years remain the largest (and only) Northern hemisphere Underwater Cerenkov Telescope. Almost exactly like our HE-Gamma colleagues we eagerly wait for more sources to show up in our field of view … At least one per Telescope … R.Wischnewski ECRS2004

  41. R.Wischnewski ECRS2004

  42. Backup Slides ... R.Wischnewski ECRS2004

  43. WIMP Search Expectation for atmospheric neutrinos: Atm. neutrino induced muons (Eth~ 10 GeV) Atmosp. neutrinos (Bartol-96, SK-oscillation)

  44. High energy cascade selection: • Upward light from below : • tmin = min(ti - tj ), j > i (for all strings in event) • tmin> -10 ns • (2)High energy: • N hit > 15 ch. Nb. of hit channels Selecting HE Cascades tmin: data (Nhit>40 ch.) tmin:Data + MC (tmin>-10 ns)

  45. Event selection criteria • - experiment • - atm. muons background High energy cascades R.Wischnewski ECRS2004

  46. Backup slides R.Wischnewski ECRS2004

  47. see: NIM A498 (2003) Baikal-NEMO CampaignMarch, 2001 • Example of interaction between ANTARES,NEMO   Baikal •  Verification of Lake Baikal Attenuation / Absorb. / Scatt. results • Cross-Calibration: AC9 (Antares/Nemo) vs. Burhan ASP15 (Baikal)  Agreement ! R.Wischnewski ECRS2004

  48. Shore Station with OMs (April 1993) R.Wischnewski ECRS2004

  49. The end. R.Wischnewski ECRS2004

More Related