1 / 46

EARTH… What lies beneath

EARTH… What lies beneath. WHAT LIES BENEATH…. CRUST: Top layer of Earth’s internal structure that has two parts… Basalt-rich oceanic crust Granite-rich continental crust (much thicker than oceanic). Relatively cold in temperature Rocky and brittle so it can fracture during earthquakes.

mora
Download Presentation

EARTH… What lies beneath

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. EARTH…What lies beneath

  2. WHAT LIES BENEATH… CRUST: Top layer of Earth’s internal structure that has two parts… Basalt-rich oceanic crust Granite-rich continental crust (much thicker than oceanic) • Relatively cold in temperature • Rocky and brittle so it can fracture during earthquakes

  3. WHAT LIES BENEATH… MANTLE: Most of Earth’s mass comes from the mantle Comprised of iron, magnesium, aluminum, and silicon-oxygen compounds • Upper 1/3 is known as the ASTHENOSPHERE • Asthenosphere is more plastic in nature than rest of the mantle

  4. WHAT LIES BENEATH… CORE: Center of Earth that has two parts… 1. Inner Core 2. Outer Core -Comprised of mostly iron • Inner Core – Under EXTREMELY high pressure so it remains solid • Outer Core – Temperature is so hot that it remains molten

  5. What is Plate Tectonics?

  6. If you look at a map of the world, you may notice that some of the continents could fit together like pieces of a puzzle.

  7. Plate Tectonic Theory • Scientific theory which describes the large scale motions of Earth’s lithosphere • Arose out of two separate observations: • Continental Drift • Seafloor Spreading

  8. The Continental Drift Hypothesis Proposed by Alfred Wegener in 1915. Supercontinent Pangaea started to break up about 200 million years ago. Continents "drifted" to their present positions. Continents "plowed" through the ocean crust.

  9. Continental Drift: Evidence Geographic fit of South America and Africa Fossils match across oceans Rock types and structures match across oceans Ancient glacial features

  10. Continental Drift: Evidence Tight fit of the continents, especially using continental shelves.

  11. Continental Drift: Evidence Fossil critters and plants

  12. Continental Drift: Evidence Correlation of mountains with nearly identical rocks and structures

  13. Continental Drift: Evidence Glacial features of the same age restore to a tight polar distribution.

  14. Seafloor Spreading U.S. Navy mapped seafloor with echo sounding (sonar) to find and hide submarines. Generalized maps showed: oceanic ridges—submerged mountain ranges fracture zones—cracks perpendicular to ridges trenches—narrow, deep gashes abyssal plains—vast flat areas seamounts—drowned undersea islands

  15. How magnetic reversals form at a spreading center

  16. Bands of seismicity—chiefly at trenches and oceanic ridges

  17. Plate Tectonics • The Earth’s crust is divided into 12 major plates which are moved in various directions. • This plate motion causes them to collide, pull apart, or scrape against each other. • Each type of interaction causes a characteristic set of Earth structures or “tectonic” features. • The word, tectonic, refers to the deformation of the crust as a consequence of plate interaction.

  18. Tectonic Plates on Modern Earth

  19. What are tectonic plates made of? • Plates are made of rigid lithosphere. The lithosphere is made up of the crust and the upper part of the mantle.

  20. What lies beneath the tectonic plates? • Below the lithosphere (which makes up the tectonic plates) is the asthenosphere.

  21. Plate Movement • “Plates” of lithosphere are moved around by the underlying hot mantle convection cells

  22. What happens at tectonic plate boundaries?

  23. The Theory of Plate Tectonics “group authorship” in 1965-1970 Earth’s outer shell is broken into thin, curved plates that move laterally atop the asthenosphere Most earthquakes and volcanic eruptions happen at plate boundaries. Three types of relative motions between plates: divergent convergent transform

  24. Divergent Convergent Transform Three types of plate boundary

  25. Spreading ridges As plates move apart new material is erupted to fill the gap Divergent Boundaries

  26. Divergent boundaries: Chiefly at oceanic ridges (aka spreading centers)

  27. Age of Oceanic Crust Courtesy of www.ngdc.noaa.gov

  28. Divergent boundaries also can rip apart (“rift”) continents

  29. How rifting of a continent could lead to formation of oceanic lithosphere. e.g., East Africa Rift e.g., Red Sea e.g., Atlantic Ocean

  30. Iceland: An example of continental rifting • Iceland has a divergent plate boundary running through its middle

  31. Presumably, Pangea was ripped apart by such continental rifting & drifting.

  32. Convergent Boundaries • There are three styles of convergent plate boundaries • Continent-continent collision • Continent-oceanic crust collision • Ocean-ocean collision

  33. Continent-Continent Collision • Forms mountains,e.g. European Alps, Himalayas

  34. Himalayas

  35. Continent-Oceanic Crust Collision • Called SUBDUCTION

  36. Subduction • Oceanic lithosphere subducts underneath the continental lithosphere • Oceanic lithosphere heats and dehydrates as it subsides • The melt rises forming volcanism • E.g. The Andes

  37. Ocean-Ocean Plate Collision • When two oceanic plates collide, one runs over the other which causes it to sink into the mantle forming a subduction zone. • The subducting plate is bent downward to form a very deep depression in the ocean floor called a trench. • The worlds deepest parts of the ocean are found along trenches. • E.g. The Mariana Trench is 11 km deep!

  38. Transform Boundaries • Where plates slide past each other Above: View of the San Andreas transform fault

  39. Most transform boundaries are in the oceans. Some, like the one in California, cut continents. The PAC-NA plate boundary is MUCH more complex than this diagram shows.

More Related