1 / 36

Jenna Kausner PBIO 427 April15, 2011

Expression of insect ( Microdera puntipennis dzungarica ) antifreeze protein MpAFP149 confers the cold tolerance to transgenic tobacco. Jenna Kausner PBIO 427 April15, 2011. Background. Antifree proteins (AFPs) have been isolated from several organisms. Fish, insects, plants, bacteria

morag
Download Presentation

Jenna Kausner PBIO 427 April15, 2011

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Expression of insect (Microderapuntipennisdzungarica) antifreeze protein MpAFP149 confers the cold tolerance to transgenic tobacco Jenna Kausner PBIO 427 April15, 2011

  2. Background • Antifree proteins (AFPs) have been isolated from several organisms. • Fish, insects, plants, bacteria • Bind to ice crystals, inhibit growth, lower freezing point and not melting point.

  3. Background • Thermal hysteresis activity (THA)- difference between melting point and nonequilibrium freezing point. • Used as an indicator of AFPs activity, so AFPs often referred to as thermal hysteresis proteins (THPs). • Varies among species: Insects (3-6 ºC), Fish (0.7-1.5 ºC), Plants (0.2-0.5 ºC)

  4. Background • AFP-producing insects: goal is to avoid freezing, cannot survive if body fluids actually freeze. • AFPs lower freezing point of hemolymph and gut fluid to prevent freezing from the external ice across the body surface.

  5. Background • Can achieve higher crop yields by improving freezing tolerance of plants. • Therefore, want to express AFPs in frost-susceptible crops to increase their cold tolerance.

  6. Purpose • Some of the most effective ATPs found in insects. • Want to test the MpAFP149 gene, isolated from the beetle Microderapuntipennisdzungarica,in its ability to increase cold-tolerance of transgenic tobacco plants and protect them from freezing damage.

  7. MpAFP149 gene • 363 bp with a signal peptide sequence • Transcript encoding 98 amino acids of mature peptide is 68.37% homologous with published AFP from Tenebriomolitor (Tm) • Tm expressed successfully in E. coli; high activity at protecting bacteria at low temperature, linearly correlated with AFP concentration.

  8. Transient expression of MpAFP149 in onion cells • Confirm expression of MpAFP149 in plants and visualize sub-cellular localization • MpAFP149 gene with 35S promoter fused with green fluorescent protein (GFP) in plasmid pCAMBIA1302-GFP • Introduced into onion epidermal cells via particle bombardment

  9. Plasmid constuction • MpAFP149 gene with signal peptide sequence obtained by PCR. • Gene construct CaMV35S-MpAFP149-Nos inserted into plasmid pCAMBIA1302 with HindIII and EcoRI to form expression vector pCAMBIA1302-MpAFP149

  10. Gene construct

  11. Plant transformation • Expression vector pCAMBIA1302-MpAFP149 transferred into competent Agrobacterium cells (EHA105 strain) • DNA extracted from kanamycin-resistant surviving Agrobacterium colonies • PCR to confirm presence of MpAFP149 transgene

  12. Plant transformation • 1-2 in. young tobacco leaf discs infected with EHA105 Agrobacterium containing pCAMBIA1301-MpAFP149. • Cultivated in the dark at 28 ºC for 2 days. • Leaf discs transferred to generation medium supplemented with hygromycin. • T0 plants allowed to grow and flower and set seeds in a growth chamber.

  13. Germination and growth • Allowed to grow 15 weeks in green house before harvesting seed capsules • T0 and Wild-type seeds sterilized by soaking in 1:9 (v/v) 30% bleach:ethanol • Rinsed 5 times with ethanol and left overnight to volatize ethanol

  14. Germination and growth • T0 seeds germinated on plates with hygromycin to select for seedlings carrying HPTII gene • Transplanted into pots to full growth at 25 ºC

  15. Identification of transgenic plants • Extracted genomic DNA and performed PCR to identify MpAFP149 gene • RNA isolated from plant leaves and reverse transcription carried out • RT-PCR products run through agarose gel electrophoresis to check MpAFP140 transcription

  16. Immunolocalization of AFP • Wild-type leaves and transgenic tobacco leaves • Polyclonal antibody raised in mouse against MpAFP149 protein • Immunogold labeling (Antibodies conjugated to gold particles)

  17. Western blot • Extracted apoplastic proteins from leaves and separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) • Western blot with antibody against MpAFP149 protein

  18. Cold-resistance analysis • After growing for one month, three transgenic and three wild-type plants of similar growth states and no visible phenotypical differences were chosen to undergo cold treatment, measure electrolyte leakage, and Malondialdehyde (MDA) content.

  19. Cold-resistance analysis • Set temperature in freezing chamber to -1 ºC for 0, 24, 48, and 72 hours and observed phentypes. • In addition, leaf samples from each group were washed with deionized water and then immersed in deionized water. • After vacuum infiltration, the electric conductivity of supernatant was detected.

  20. MDA content • MDA- natural occuring reactive species that is a marker for oxidative stress • The level of MDA at -1 ºC was determined to analyze the comparative rate of lipid peroxidation.

  21. Results • The localization of MpAFP149 was determined by expressing MpAFP149:GFP construct plasmid in onion epidermal cells. • For the control, fluorescence was seen throughout the entire cell and for the transformed cells it was solely in the apoplast(see Figure next slide).

  22. Localization of MpAFP149:GFP fusion protein

  23. Results • 35S-MpAFP149-NOS vector transformed into tobacco using Agrobacterium-mediated gene transfer. • Screened by hygromycin and tested for the presence of the vector by PCR. • Two samples, T0-5 and T0-39 showed higher transcript level by RT-PCR. • These two lines were chosen for detailed analysis.

  24. RT-PCR on T1 transgenic tobacco plants

  25. Immunolocalization of AFP • Immunogold labeling approach used to determine if MpAFP149 protein was expressed and where it localized in transgenic tobacco. • Showed that MpAFP149 protein accumulated in outer layers of cell wall in transgenic plant, but absent in control tobacco plant

  26. Immunolocalization of AFP

  27. Western Blot • Western blot for apoplastic proteins showed expected protein band of 10.2 kDa, indicating that mature peptide protein MpAFP149 synthesized in transgenic tobacco.

  28. Western Blot

  29. Cold resistance analysis • When exposed for 1 day, both transgenic and wild-type tobacco plants only exhibited moderate dehydration. • When exposed for 2 and 3 days, most leaves of wild-type were frozen but transgenic tobacco only exhibited dehydration of a few older leaves near the plant base.

  30. Cold resistance analysis • After returning to room temperature, MpAFP149 plants overcame dehydration and recovered completely. • Wild-type displayed permanent damage. • Transgenic line displayed improved cold tolerance and enhanced recovery

  31. Ion Leakage • Low temperatures disrupted semi-permeability of tobacco cytomembranes • Effusion of electrolytes resulted in increased electrical activity of tissues • Over time, ion leakage difference increased between control and transgenic tobacco.

  32. MDA content • Increase of MDA parallels the increase in conductivity/ion leakage, one does not cause the other. • Wild-type plants suffered higher oxidative lipid injury than transgenic plants; correlated to increases in ion leakage and MDA content.

  33. Conclusion • Transgenic tobacco plants expressing MpAFP149 protein with the signal peptide showed improved tolerance to cold and an enhanced recovery. • MpAFP149 may be used as a candiate for the improvement of frost-resistant crops.

  34. References • Wang, Y., Qiu, L., Dai, C., Wang, J., Luo, J., Zhang, F., & Ma, J. (2008) Expression of insect (Microderapuntipennisdzungarica) antifreeze protein MpAFP149 confers the cold tolerance to transgenic tobacco. Plant Cell Rep 27: 1349-1358.

More Related