1 / 43

Teoria podejmowania decyzji

Teoria podejmowania decyzji. Wykład 7. Reduction of compound lotteries. 1. A. 1/2. A. 1/3. 1/4. A. 1/2. 1/2. 1/3. 3 / 8. B. B. 3 / 8. 1/3. C. 1/2. 1/2. A. 1/4. A. 3 / 8. 1/2. B. 3 / 8. C. C. 1/2. A. 1/4. B. 1/4. C. Von Neumann Morgenstern proof graphically 1.

Download Presentation

Teoria podejmowania decyzji

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Teoria podejmowania decyzji Wykład 7

  2. Reduction of compound lotteries 1 A 1/2 A 1/3 1/4 A 1/2 1/2 1/3 3/8 B B 3/8 1/3 C 1/2 1/2 A 1/4 A 3/8 1/2 B 3/8 C C 1/2 A 1/4 B 1/4 C

  3. Von Neumann Morgenstern proof graphically 1

  4. Von Neumann Morgenstern proof graphically 2

  5. Common misunderstandings

  6. Fallacy (2) • Fire insurance: • Fire: paythepremium, house rebuilt (C) • No Fire: paythepremium, house untouched (B) • No insurance: • Fire: house burnt, no compansation (D) • No Fire: house the same (A) • A≻B≻C≻D • Supposetheprobability of fireis 0.5 • And an individualisindifferentbetweenbuying and not buyingthe insurance • AlthoughFire insurance hassmallervariance and ½u(A) + ½u(D) = ½u(B) + ½u(C), itdoes not meanthatFire insurance should be chosenover No insurance Loss = $70K Loss = $60K Loss = $100K Loss = $0 Riskaverse, and EL(insurance) = $65K EL(no insurance) = $50K

  7. Fallacy (3) • Fire insurance: • Fire: paythepremium, house rebuilt (C) • No Fire: paythepremium, house untouched (B) • No insurance: • Fire: house burnt, no compansation (D) • No Fire: house the same (A) • A≻B≻C≻D • Supposethattheprobability of fireis ½ and an individualprefers not buyingfire insurance and hence ½u(A) + ½u(D) > ½u(B) + ½u(C) ⇒ u(A) - u(B) > u(C) - u(D) • Howeveritdoes not meanthatthechangefrom B to A ismorepreferredthanthechangefrom D to C. • Preferencesaredefinedoverpairs of alternatives not pairs of pairs of alternatives

  8. Crucial axiom - independence • Our version • The general version • Why the general version implies our version?

  9. Independence – examples • If I prefer to go to the moviesthan to go for a swim, I mustprefer: • to toss a coin and: • heads: go to the movies • tails: vacuumclean • than to toss a coin and: • heads: go for a swim • tails: vacuumclean • If I prefer to bet on red than on even in roulette, then I mustprefer: • to toss a coin and • heads: bet on 18 • tails: bet on red • than to toss a coin and: • heads: bet on 18 • tails: bet on even

  10. Machina triangle p2 x2 1 1-a P a aP+(1-a)R x1 R x3 1 p1

  11. Independenceassumption in the Machina triangle Suppose that A1 is better than A2 is better than A3 p2 1 αP+(1-α)R P αQ+(1-α)R R Q 1 p1

  12. 17.1 and 17.2 17.1) Choose one lottery: P=(1 mln, 1) Q=(5 mln, 0.1; 1 mln, 0.89; 0 mln, 0.01) 17.2) Choose one lottery: P’=(1 mln, 0.11; 0 mln, 0.89) Q’=(5 mln, 0.1; 0 mln, 0.9) Kahneman, Tversky (1979) [commonconsequenceeffectviolation of independence] Many peoplechoose P over Q and Q’ over P’

  13. Common consequence graphically P = (1 mln, 1) P’= (1 mln, 0.11; 0, 0.89) Q = (5 mln, 0.1; 1 mln, 0.89; 0, 0.01) Q’= (5 mln, 0.1; 0, 0.9) • If we plug c = 1mln, we get P and Q respectively • If we plug c = 0, we get P’ and Q’ respectively

  14. 18.1 i18.2 18.1) Choose one lottery: P=(3000 PLN, 1) Q=(4000 PLN, 0.8; 0 PLN, 0.2) 18.2) Choose one lottery: P’=(3000 PLN, 0.25; 0 PLN, 0.75) Q’=(4000 PLN, 0.2; 0 PLN, 0.8) Kahneman, Tversky (1979) [common ratio effect, violation of independence] Many peoplechoose P over Q and Q’ over P’

  15. Common ratio graphically P=(3000 PLN, 1) P’=(3000 PLN, 0.25; 0 PLN, 0.75) Q=(4000 PLN, 0.8; 0 PLN, 0.2) Q’=(4000 PLN, 0.2; 0 PLN, 0.8)

  16. Monotonicity of utilityfunction x+d x

  17. Monotonicity of utilityfunction

  18. Monotonicity of utilityfunction • prefersmore to less • currentwealth x • probability p of bankruptcy (u(0)=0) • how much to pay to avoidit?

  19. Monotonicity of utilityfunction F(x) 1 x

  20. Examples – comparingpairs of lotteries

  21. First Order StochasticDominance (FOSD) cdf cdf 1 1 1 1 t t

  22. FOSD • Assume X and Y aretwodifferentlotteries (FX(.), FY(.) are not the same) • LotteryX FOSD Y if: For all a, hence: Thosewhoprefermore to less willneverchooselotterythatisdominated in the abovesense. • Theorem: X FOSD Y if and onlyif Eu(X) ≥ Eu(Y), for allinreasing u

  23. Compare

  24. Marginalutility x+d Todaychancenodessplit 50:50 x-d x

  25. Marginalutility utility payoff

  26. Certaintyequivalent and riskpremium 4,5 1 2 0,5 0,5 utility 10 6 1 

  27. Marginalutility • x – initialwealth (number) • l – lottery with zero exp. value (randomvariable) • k –multiplier (we tak k close to zero) • d – riskpremium (number) • x-d – certaintyequivalent for x+l

  28. Marginalutility

  29. Second Order StochasticDominance cdf 1 t 1 1 1 t

  30. SOSD • Assume X and Y aretwodifferentlotteries (FX(.), FY(.) are not the same) • LotteryX SOSD Y if: For all a hence: • Thosewhoareriskaversewillneverchoose a lotterythatisdominated in the abovesense. • Theorem: X SOSD Y if and onlyif Eu(X) ≥ Eu(Y), for allinreasing and concave u

  31. Compare and find FOSD and SOSD

  32. Mean-variancecriterium • Riskaversiondoesn’tmeanthatalways: A betterthan B, ifonly E(A)=E(B) and Var(A)<Var(B) • somelotteries do not result from another with meanpreservingspread • istruewhenVar(A)=0 • Mean-variancecriteriumworkse.g. for normallydistributedrandomvariables (lotteries)

  33. Measures of riskaversion • Riskpremiummeasuresriskaversion with respect to a givenlottery • As a function of payoffvaluesriskaversionismeasured by Arrow, Prattmeasures of (local) riskaversion

  34. Exercise 1 • From now on let’sassume X is a set of monetarypay-offs (decisionmakerprefersmoremoneythan less) • Decisionmaker with vNMutilityfunctionpreferslottery (100, ¼; 1000, ¾) to (500, ½; 1000, ½) • Whatis a realtionbetween(100, ½; 500, ¼; 1000, ¼) and (100, ¼; 500, ¾)? • Suggestion – we canarbitrarily set utilityfunction for twooutcomes

  35. Exercise 2 • Decisionmakerisindifferentbetweenpairs of lotteries:(500, 1) and (0, 0,4; 1000, 0,6)and (300, 1) and (0, ½; 500, ½) • Can we guess the preferencerelationbetween(0, 0,2; 300, 0,3; 1000, ½) and (500, 1)?

  36. Exercise 3 • Decisionmaker with vNMutilityisriskaverse and indifferentbetween the followingpairs(400, 1) and (0, 0,3; 1000, 0,7)and(0, ½; 200, ½) and (0, 5/7; 400, 2/7) • Can we guess the preferencerelationbetween(200, ½; 600, ½) and (0, 4/9; 100, 5/9)? • (suggestion – remamberthanvNMutilityisconcave)

More Related