1 / 51

Lecture 1 on J/  suppression

Michel GONIN. Lecture 1 on J/  suppression. 1. Charmonium bound states. 2. Screening effects in the plasma. 3. Experimental results. 4. Life (for physicist) is tough. Heavy Ion Collisions. c. c. Charmonium bound states. Colorless States. V(r). r 0. r. r 0. c. c.

Download Presentation

Lecture 1 on J/  suppression

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Michel GONIN Lecture 1 on J/ suppression 1. Charmonium bound states 2. Screening effects in the plasma 3. Experimental results 4. Life (for physicist) is tough

  2. Heavy Ion Collisions

  3. c c Charmonium bound states Colorless States

  4. V(r) r0 r r0 c c Heavy Quark Potential Models

  5. V(r)  ½ 2r2- /r r H = p2/2+ V(r)  = (1.5/2) GeV = reduced mass  and  = « free » parameter Hn = Enn Eigen values and vectors

  6. 1D Quantum Harmonic Oscillator V = kx2/2  = (k/m)1/2 Etot a =(X+ iP ) /2 a+ =(X- iP ) /2 x -a +a H = h (N + 1/2) Eigen values : Hn= (n + 1/2) hnn = 0,1,2,3,4 … 0 (x) =(m/h)1/2 exp(- mx2/2h) (t)= n cn (n! )-1/2 (a+)n e –i(n+1/2)t0

  7. Hydrogen atom Ek,l = - EI /( k+l )2 k = 1,2,3,4,… 3D Quantum Harmonic Oscillator En = ( k+l + 3/2) h = (n + 3/2) h n=0,1,2,.. V(r) = ½ 2r2 3D HAMILTONIAN H3D = p2/2+ V(r) r2= x2+y2 +z2 p2= px2+py2+pz2

  8. Degenerate States En = (n + 3/2) h E2 = 7h/2 E1 = 5h/2 E0 = 3h/2 l 0 1 2 l = orbital angular momentum

  9. E2 = E0 + 700 MeV E1 = E0 + 350 MeV H3DO E0 l 0 1 2  and  = « free » parameter V(r)  ½ 2r2- /r

  10. E2 = E0 + 700 MeV E1 = E0 + 350 MeV E0 Why relativistic effects 0 ??

  11. E2 = E0 + 700 MeV E1 = E0 + 350 MeV E0 Why relativistic effects 0 ?? h = 350 MeV and < En> = 4 < T > < Tquark>  80 MeV << mc2 (1500 MeV)

  12. E2 = E0 + 700 MeV E1 = E0 + 350 MeV H3DO E0 l V1(r) = -/r 0 1 2  H=H3DO+V1 V(r)  ½ 2r2+ V1(r)

  13. E2 = E0 + 700 MeV E1 = E0 + 350 MeV H3DO E0 l V1(r) = -/r 0 1 2  H=H3DO+V1 V(r)  ½ 2r2+ V1(r) Stationary Perturbation Theory (degenerate Eigenvalue) <n , l , m V1n , l , m>

  14. E2 = E0 + 700 MeV 2, 0, 0> 2, 2, m> E1 = E0 + 350 MeV 1, 1, m> H3DO E0 0, 0, 0> l V1(r) = -/r 0 1 2  H=H3DO+V1 V(r)  ½ 2r2+ V1(r) Stationary Perturbation Theory (degenerate Eigenvalue) <n , l , m V1n , l , m>

  15. H() = H0 + WH() > = E() () > • En () = En0 +  En1 + 2En2 + 3En3 + 4En4 + … • ()> = 0> + 1> + 22> + 3 3 > + … Matrix Eigenvalue  Partial Diagonalisation

  16. 2, 0, 0> 2, 2, m> 1, 1, m> <0, 0, 0 V1 0, 0, 0> = - 30 ’ 0, 0, 0> <2, 0, 0 V1 2, 0, 0> = - 25 ’ l <1, 1, m V1 1, 1, m> = - 20 ’ 0 1 2 <2, 2, m V1 2, 2, m> = - 16 ’ [L2, V1] = 0

  17. 2, 0, 0> 2, 2, m> 1, 1, m> <0, 0, 0 V1 0, 0, 0> = - 30 ’ 0, 0, 0> <2, 0, 0 V1 2, 0, 0> = - 25 ’ l <1, 1, m V1 1, 1, m> = - 20 ’ 0 1 2 <2, 2, m V1 2, 2, m> = - 16 ’ n = 2 l =2 +700 MeV + 702 MeV l =0 n = 2 + 610 MeV n = 1 l =1 +350 MeV + 381 MeV n = 1 n = 0 l =0 E0 E0 n = 0 [L2, V1] = 0

  18. Theory of Fine and Hyperfine Interactions Orbital angular momentum L Spin angular momentum S Overall angular momentum J = S + L  H=H3DO+V1 + HFine + HHyperfine Stationary Perturbation Theory ……

  19. l =2 , n = 2 l =2 3770 MeV S=1 n = 2 l =0 3686 MeV l =0 , n = 2 S=0 3654 MeV S=1 J =2 3556 MeV l =1 l =1 , n = 1 n = 1 3526 MeV 3511 MeV S=1 J =0 3417 MeV S=1 l =0 3097 MeV l =0 , n = 0 n = 0 S=0 2980 MeV

  20. l =2 3770 MeV S=1 3686 MeV l =0 S=0 3654 MeV S=1 J =2 3556 MeV l =1 3526 MeV 3511 MeV S=1 J =0 3417 MeV S=1 3097 MeV l =0 S=0 2980 MeV J 0 1 1 0 1 2 J = S + L

  21. 3770 3686 3654 3556 3526 3511 3417 3097 2980 0 1 1 0 1 2 MeV  ’ J/ J

  22. 3770 3686 3654 3556 3526 3511 3417 3097 2980 0 1 1 0 1 2 MeV  ’ J/ J

  23. The fundamental state The resonance observed by Crystal Ball… preliminary results …and by E835 in the decay channel:

  24. The state • Crystal ball is the only • experiment which saw an • evidence of this resonance • E760/E835 searched for this • resonance in the energy region: • Ecm=(3570-3660) MeV, in the • decay channel: but no • evidence of a signal was found Crystal Ball • Mass: • Total width:

  25. The resonance E835 is the first experiment which observed the resonance in annihilations

  26. l =2 3770 MeV S=1 3686 MeV l =0 S=0 3654 MeV S=1 J =2 3556 MeV 3526 MeV l =1 3511 MeV S=1 J =0 3417 MeV S=1 3097 MeV l =0 S=0 2980 MeV

  27. Binding Energy (MeV)  ’ 40 J/ 670 l =2 3770 MeV S=1 3686 MeV l =0 S=0 3654 MeV S=1 J =2 3556 MeV 3526 MeV l =1 3511 MeV S=1 J =0 3417 MeV S=1 3097 MeV l =0 S=0 2980 MeV

  28. 2, 0, 0> 2, 2, m> 1, 1, m> <0, 0, 0 V1 0, 0, 0> = - 30 ’ 0, 0, 0> <2, 0, 0 V1 2, 0, 0> = - 25 ’ l <1, 1, m V1 1, 1, m> = - 20 ’ 0 1 2 <2, 2, m V1 2, 2, m> = - 16 ’ n = 2 l =2 +700 MeV + 702 MeV l =0 n = 2 + 610 MeV n = 1 l =1 +350 MeV + 381 MeV n = 1 n = 0 l =0 E0 E0 n = 0 [L2, V1] = 0 ’ = ?  = ?

  29. l =2 + 702 MeV l =0 n = 2 + 610 MeV l =1 + 381 MeV n = 1 l =0 E0 n = 0 E0 = (3/2)h - 30 ’ E1 = (5/2)h - 20 ’ E21 = (7/2)h - 25 ’ E22 = (7/2)h - 16 ’ 381 = h + 10 ’ ’ = 10MeV h = 280MeV 610 = 2 h + 5 ’ 702 = 2 h + 14 ’

  30. VQCD(r)  ½ 2r2- /r ( = 15 r0 ’ ) r0 r ’ = 10MeV h = 280MeV r0 = (h/)1/2

  31. ’ = 10MeV h = 280MeV r0 = (h/)1/2 VQCD(r)  ½ 2r2- /r ( = 15 r0 ’ ) r0 r r0  0.3Fermi « size » of the J/ r02 = (hc)2/c2h

  32. Vem (r) = - (em.hc)/r em = 1/137  0.005 QCD = /hc VQCD(r)  ½ 2r2- /r r0 r  0 r VQCD (r)  - /r The strong coupling constant : QCD = ?

  33. r0 r ’ = 10MeV h = 280MeV r0 = (h/)1/2 QCD  strong interaction QED  em  0.005 VQCD (r) -/r QCD = /hc QCD = (15 r0 ’ ) / hc S  0.5

  34. Debye Screening  PLASMA Collection of free charged particles A gas is a plasma if it reacts as a « unit » to electric, magnetic , … fields.

  35. Strong interactions QCD • 8 colour gluons ( m=0, spin =1 ) • 1 parameter : gs (flavor independant) gs S

  36. QCD g1 = (r b) q q g5 g2 = (r g) g3 = (b g) q q g4 = (b r) t g5 = (g b) g6 = (g r) QED + + e  g7 = (r r + g g - 2b b)/6  g8 = (r r - g g )/2 - -  e Strong interactions QCD Quarks : 3 colours ( r , b , g )

  37. Electroweak Strong (QCD) 10 GeV 90 GeV 1 GeV QCD  S

  38. Strong interactions QCD Gluon coupling -> « anti-screening » effects screening anti-screening for « small » distances, QCD  0

  39. Strong interactions QCD QCD screening effects asymptotic freedom

  40. x Debye Screening  PLASMA “Test charge” • Collective response to charge fluctuation (local surplus)  reducing the “long” range nature of the interaction But every individual charge is indeed a local fluctuation  statistical effects …… equilibrium

  41. Spatial density of charges : Poisson equation : KT  e  Solution :  = potentiel T = temperature (Boltzmann) Interaction « energy » Thermal kinetic energy kD-1=D = Debye screening radius

  42. In an electromagnetic plasma, the potential of a charge is screened by the field of the electrons that surround it n0 = density of electrons in the plasma

  43. In an electromagnetic plasma, the potential of a charge is screened by the field of the electrons that surround it n0 = density of electrons in the plasma In a QGP, the strong colored field will be screened. e2(Gauss system) aQCD ~ 1 kT ~ 200 MeV n0n = 3.6 T3(Stefan-Boltzmann law)  n = 28.8 106 MeV3

  44. lD depends on the temperature

  45. lD depends on the temperature

  46. c c Debye Screening  PLASMA x x

  47. Debye Screening  PLASMA x x Debye Screening  no more bound states

  48. q q V  r T = Tc STRONG INTERACTIONS QCD PREDICTION

  49. quarkonia q q Lattice QCD ’  T > Tc   = 0 Signals for the Deconfinement Successive (vs. temperature) melting for the quarkonia Satz et al.

More Related