460 likes | 472 Views
Explore the use of surface-based descriptors to describe and predict intermolecular interactions. Investigate the potential of local properties on molecular surfaces and their ability to replace traditional atom-atom approaches. Analyze a set of 26 descriptors and calculate their principal components to determine the dimensionality of physical property space.
E N D
Local properties on molecular surfaces Local properties on molecular surfaces Tim Clark Computer-Chemie-Centrum Friedrich-Alexander-Universität Erlangen-Nürnberg
Intermolecular Interactions • Physical components are well known • Coulomb • Donor/acceptor • Dispersion (and repulsion) • We are accustomed to atom-atom approaches • Force fields • QSAR and QSPR • Are there alternatives?
QM-Based Descriptors • “Electronic“ • Molecular Electrostatic Potential (MEP) • Polarizability • Donor/Acceptor Properties • Multipole Moments • Molecular surface • Local properties at a surface • Isodensity (DFT, Murray and Politzer) • SES (fast) • Statistics of the local property as descriptors • MEP (Murray and Politzer)
Surface Descriptors • MEP at the surface has a physical basis. • We should be able to describe intermolecular interactions using only surface properties. • Scaffold-Hopping is more likely if we use only surface-based descriptors. • Surface integral-models provide an interesting alternative to statistical QSPR • Atom-based simulation methods scale badly (because they treat atoms)...... BUT • Surface-based descriptors are expensive to calculate • ... and difficult to interpret.
How Many Descriptors do we need for Physical Properties? (and what are they?) • Choose 26 descriptors that appear again and again in our QSPR-models • Calculate them for the entire Maybridge database • Calculate the principal components (factors) • What is the dimensionality of physical property space, what are the descriptors?
What is Missing? • Purely electrostatic interactions are described well • Donor/Acceptor, Electronegativity and Hardness are described by the atom-specific descriptors • Sums of potential-derived charges • Counts of H-bond donors and acceptors • Number of aromatic rings • ...... etc. • Can we design suitable local properties ?
Local Ionization Energy Sjoberg, P.; Murray, J. S.; Brinck, T.; Politzer, P. A., Can. J. Chem. 1990, 68, 1440; Murray, J. S.; Abu-Awwad, F.; Politzer, P., THEOCHEM 2000, 501-502, 241; Hussein, W.; Walker, C. G.; Peralta-Inga, Z.; Murray, J. S., Int. J. Quant. Chem. 2001, 82, 160; Politzer, P.; Murray, J. S.; Concha, M. C., Int. J. Quant. Chem. 2002, 88,19.
Local Ionization Energy IEL MEP
Other Local Properties • Local Electron affinity: • Local Hardness:
Local Electron Affinity Fukui Function
Polarizabilty Variational method (Rinaldi and Rivail 1974) • Fast (no need for excited states) • Comparable to a population analysis
Computer-Chemie-Centrum Universität Erlangen-Nürnberg Variational Method (AM1) Std. dev. = 2.99 Å3 PM3 : 4.44 Å3 MNDO : 1.94 Å3
Computer-Chemie-Centrum Universität Erlangen-Nürnberg Parametrized Method (AM1)Test Set G. Schürer, P. Gedeck, M. Gottschalk, T. Clark, Int. J.Quant. Chem., 1999, 75, 17-31. Std. dev. = 0.70 Å3 PM3 : 0.74 Å3 MNDO : 0.78 Å3
Atomic and “Orbital-“ Polarizabilities Partitioning: Additivity:
Two-Center Terms B. Martin, P. Gedeck, T. Clark, Int. J. Quant. Chem., 2000,77,473.
The Additive Molecular Polarizability (AM1) Std. dev. = 0.59 PM3 : 0.65 MNDO : 0.60
Atomic Polarizability Tensors: p-Bromotoluene
Local Polarizability Density due to a singly occupied atomic orbital j Coulson population of atomic orbital j Mean polarizability calculated for atomic orbital j
MEP IEL EAL L L MEP 1 IEL 0.15 1 EAL -.12 0.18 1 L 0.21 0.81 -.44 1 L 0.29 0.19 0.51 -.14 1 Correlations Between Local Properties on Molecular Surfaces
Boiling Points (N = 5453):Leave 10% out Cross-validation “old“ and “new“ descriptors 18 Descriptors (18:10:1 = 239 weights) MSE = 0.02 MUE = 17.3 RMSD = 24.9 10 Descriptors (10:9:1 = 128 weights) MSE = 0.3 MUE = 14.6 RMSD = 21.0
Surface-integral models • P= target property • Ai = area of triangle i • ntri = number of triangles
Surface-integral models • MolFESD: • Pixner, P.; Heiden, W.; Merx, H.; Möller, A.; Moeckel, G.; Brickmann, J. J. Chem. Inf. Comput. Sci.1994, 34, 1309-1319. • Jäger, T.; Schmidt, F.; Schilling, B.; Brickmann, J. J. Comput.-Aided Mol. Des.2000, 14, 631-646 • Jäger, R.; Kast, S. M.; Brickmann,. J. Chem. Inf. Comput. Sci.2003, 43, 237-247. • GB/PSA: • Best, S. A.; Merz, K. M., Jr.; Reynolds, C. H.. J. Phys. Chem. B1997, 101, 10479-10487.
Partial solvation Ligand Receptor Water
Sources of data • The available data are limited in • Number • Quality • Use alternative sources • e.g. for solvation free energies • Gas phase proton affinites (G3) • pKas
Physical-Property Mapping • Maybridge used as the “chemistry“ dataset • Use the top six principal components to train a 100 100 Kohonen net (unsupervised training) • 2,105 compounds selected from the World Drug Index as real drugs used as the drug dataset
“Drugs“ “Drugs“ Physical Property Map Train Kohonen Net “chemistry“
Model Applicabilty, Maps as Models? Aqueous solubility 550 (ompounds)
Acknowledgments • Dr. Bernd Beck Dr. Andrew Chalk • Dr. Peter Gedeck Dr. Bill King • Dr. Harry Lanig Dr. Torsten Schindler • Dr. Cenk Selçuki Dr. Paul Winget • Matthias Brüstle Bernd Ehresmann • Matthias Hennemann Anselm Horn • Bodo Martin Gudrun Schürer • Kendall Byler Jr-Hung Lin • Dr. Tim F. Mitchell (Cambridge Combinatorial) • Prof. Johnny Gasteiger • Pfizer (Dr. Alexander Alex, Dr. Marcel de Groot) • Bayer Pharma (Dr. Andreas Göller, Dr. Jörg Kenderich) • 4SC Scientific (Dr. Thomas Herz) • Alexander-von-Humboldt Foundation • Hewlett-Packard