1k likes | 1.02k Views
This chapter provides an overview of various networking devices such as repeater, hub, bridge, switch, router, and gateway. It covers topics like network addressing, subnetting, routing techniques, routing protocols, routing algorithms, and network protocols.
E N D
Chapter5 NetworkLayer Compiled By: Ashish Kr. Jha
Overview • NetworkingDevices:Repeater,Hub,Bridge,Switch,Router, Gateway • NetworkAddressing • Subnetting • RoutingTechniques (Staticvs.Dynamic) • RoutingProtocols:RIP,OSPF,BGP,UnicastandMulticast Routing Protocols • RoutingAlgorithms:ShortestPathAlgorithms,Flooding,Distance • VectorRouting, LinkStateRouting • Protocols:ARP,RARP,IP,ICMP
NetworkingDevices • ACollisionDomainisasectionofnetworkwherepacketcollisions canoccuriftwonodes attempttocommunicateatthesametime. • A BroadcastDomainincludesallofthehoststhatabroadcast frametransmittedbyasingle host canreach. • Repeater: • Physical LayerDevice. • Regeneratesthesignal. • Extendthedistanceover 200m • whichasignal may • traveldowna cable. • Collisiondomain=1 • Broadcastdomain=1 100m 100m Repeater Compiled By: Ashish Kr. Jha
NetworkingDevices Hub: • MultiportRepeater • A central point of a star topology and allows the multiple connectionsof devices. • InrealityaHubisaRepeaterwithmultipleportsFunctionsin a similarmannertoaRepeater. • Hub works at the Physical Layer of the OSI model. Passes • datano matter whichdeviceitis addressedto. • Collisiondomain= 1 • • • • Broadcastdomain=1 TwoTypes HUB Active Hub • RegeneartesSignal,needspower • PassiveHub • AsimpleConnector(nosignalRegeneration) • Compiled By: Ashish Kr. Jha
5 • NetworkingDevices • Bridge: • DataLinkLayerDevice • MaintainsMACtablewithMACaddressandportno.and decideswhethertoforwardtheframeornot. • DividesNetworkintodifferentLANSegments • SmarterthanRepeaters • Collisiondomain=2(#LANSegments) • Broadcastdomain=1 Compiled By: Ashish Kr. Jha
NetworkingDevices(Bridge) Compiled By: Ashish Kr. Jha
NetworkingDevices • Switch: • MultiportBridge • A switchisessentiallyafast,multi-portbridgethatcancontain dozens ofports. • A switchdynamicallybuildsandmaintainsaMACtable,which • holds allofthenecessaryMAC informationforeachport. • Theswitch thenforwardsordiscardsframesbasedonthetable entries. • TableentriesarecalledContentAddressableMemory. • SwitchworksatDatalinkLayerofOSIReferencemodel Compiled By: Ashish Kr. Jha
NetworkingDevices • Switch: • DataLinkLayerDevice • AMultiport Bridge • DividesNetworkinto differentLANSegments • Collisiondomain=no. ofports • Broadcastdomain=1 Switch DataLinkLayer Physical Layer Physical Layer Compiled By: Ashish Kr. Jha
NetworkingDevices (a)Ahub. (b)Abridge. (c)aswitch. Compiled By: Ashish Kr. Jha
NetworkDevices • Router: • Arouterisaspecialtypeofcomputer. It has thesamebasic componentsasastandarddesktopPC. IthasaCPU,memory,asystembus,andvariousinput/output interfaces. • • • However,routersaredesignedtoperformsomeveryspecific functionsthatarenot typicallyperformedbydesktopcomputers. • Forexample,routersconnectandallowcommunicationbetween twonetworksanddeterminethebestpathfordatatotravelthrough theconnectednetworks. • RouterworksatNetworkLayerofOSIReferencemodel. Compiled By: Ashish Kr. Jha
NetworkingDevices • Routers: • NetworkLayerDevice. • AbletoanalyseNetworklayer addressandfindtheroute. • MaintainsRoutingtabletoroutepackettodestinationaddress. • Expensive andSlowerthanswitch. • SupportsHierarchicaladdressing. • “UseSwitchwhere you can, UseRouterwhereyoumust.” NetworkLayer DataLinkLayer PhysicalLayer Compiled By: Ashish Kr. Jha
NetworkDevices • NetworkInterfaceCard(NIC): • ANICisaprintedcircuitboardthatfitsintotheexpansionslotofa busonacomputermotherboard. • It canalsobeaperipheraldevice. • NICs aresometimescallednetworkadapters. • Each NIC is identified byauniquecodecalledaMediaAccess • Control(MAC)address.Thisaddressis communicationforthehost onthenetwork. • Asthenameimplies,theNIC • controlshostaccesstothenetwork. • NIC worksatDatalinklayerofOSI Referencemodel. used tocontroldata Compiled By: Ashish Kr. Jha
NetworkingDevices • Gateway: • Gatewayisaserverthatappearstotheclientasifitwereanorigin server. • Allowsdifferentnetworkstocommunicatebyofferingatranslation • servicefromone protocolstacktoanother. • Gatewayactsonbehalfoftheotherserversthatmaynotableto communicatedirectlywithclients. • Allows devicesindifferentnetworkstocommunicate • Generictermforrouters • Theterm“gateway”isalsousedfordevicethatinterconnects differentNetworksandwhichperformtranslationof protocols(Multi-ProtocolRouters). Network1 Network2 Gateway Compiled By: Ashish Kr. Jha
NetworkLayerAddress • Usedforglobalrecognitionofadevice • Hierarchicallyorganized foreffectiverouting • Wewillmainlydiscuss about IPv4address • Why IPaddressifwealreadyhaveuniqueMACaddress? • MACaddressisa data linklayeraddress thatisrecognizedonly • in alocalLAN. • IPis globally recognized,Networklayer address used for • routingthepacketsto it’sdestination Compiled By: Ashish Kr. Jha
WhatisanIPAddress? AnInternet Protocol(IP)addressis a number thatidentifiesa deviceon acomputer network. Compiled By: Ashish Kr. Jha
IPV4AddressNotation • IPv4is 32bits long. • Thusatotal of232 (4,294,967,296i.e.nearly4billion) IPaddress is possible in IPv4. • These address aretypicallywritteninso calleddotted-decimal • notation. e.g.202.70.91.200 (202)10=(11001010)2 • • • Eachinterfaceoneveryhost androuterintheglobalInternetmust • haveanIPaddressthatis globallyUnique. • IPV4SupportedAddressTypes: UnicastAddress MulticastAddress BroadcastAddress • • • Compiled By: Ashish Kr. Jha
IPV4Addressing • 32bitsofIPaddress isdividedintonetworkandhost portion. • Network Host • Classes A(8bitsisusedfornetworksandrest24bitsforhost) B(16bitsis usedfornetworksandrest16bitsforhost) C(24bitsisusedfornetworksandrest8bitsforhost) D(UsedforMulticasting) E(ForFutureUse) • • • • • Compiled By: Ashish Kr. Jha
Class-fullIPV4Address Compiled By: Ashish Kr. Jha
IPV4AddressClass • ClassA • • Range: 0–127 • Sototal of126(28-1-2)Networksarepossible andtotalhost=224 in eachNetwork. • Defaultsubnetmaskis255.0.0.0 • Class B • • Range: 128–191 • Sototalof 216-2Networksarepossible andtotalhost =216ineach • Network. • Defaultsubnetmaskis255.255.0.0 Compiled By: Ashish Kr. Jha
IPV4AddressClass • Class C • • Range: 192–223 • Sototal of 224-3Networksarepossible andtotalhost=28in each Network. • Defaultsubnetmaskis255.255.255.0 • Class D • • Range: 224–239 • UsedforMulticasting • • E.g.224.0.0.1(group) • Class E • • Range240-255 • Notused (forfutureuse) Compiled By: Ashish Kr. Jha
PublicandPrivateIPAddress • PublicIPgloballyUnique e.g.202.70.91.7 • • Visibletopublic,people canaccessyour device. • PrivateIPsignificantinLocalSitesonly. • PrivateIParecommonlyused whenthepublicIPcouldn’tbe • obtainedforalldevices. • PrivateIPaddress Range Compiled By: Ashish Kr. Jha
IPSub-netting • Dividethelargernetworkinto smallermanagablesub-networks • Theconceptisto useVLSM(VariableLength SubnetMask) • Subnet Mask=>All1sinnetworkPart • All0s inhostpartofIPAddress • IPaddressANDedwithSubnetmaskwillgivenetworkID Aclass B networksubnettedinto 64subnets. Compiled By: Ashish Kr. Jha
IPSub-netting • CIDR(ClasslessInter-DomainRouting) • WithVLSM,classofIPaddressisnolongera usefulinformationforrouting • Sotoidentifythen/wthatIPbelongto,SubnetMaskalsotravelsalongwith IPaddressin CIDR. • A CIDR Notation for IP address 192.1.1.1 with subnet 255.255.255.240 is 192.1.1.1/28 • Moreover, when VLSM and CIDR is used, it is important to keep subnets groupedtogethertoallowAggregationorsummarization. • • Eg. n/w like 192.168.0.0/24 and 192.168.1.0/24 should be near to each • otherso athigherlevel,routerscancarryrouteforjust192.168.0.0/23 Compiled By: Ashish Kr. Jha
IPSub-netting • Supposethereare4DepartmentsA(23Hosts),B(16),C(28),D(13).Given anetwork202.70.64.0/24,performsub-nettinginsuchwaythatIP wastageineachsub-networkisminimum.FindSubnetmask,N/WID, BroadcastIDandusablehost rangeforeachnetwork. • AvailableNetworkis202.70.64.0/24 • i.e.TotalrangeofavailableIPaddresses: • • 202.70.64.0–202.70.64.255 • Weproceedsub-nettingwiththedepartmentwithhighestno.of • host i.e.CandthenA,BandDrespectively. Compiled By: Ashish Kr. Jha
IPSub-netting • For Dept. C (Startwith networkwith maxmhosts) • No.of hosts=28 • ForNo.of bitsrequiredforhost(Suffix)part(H), • 2H -2≥ 28=>H =5 (SelectminimumvalueofH) • ie.Totalno.ofIPaddressesthisn/w can provide= 25= 32 • No.ofbitsforNetwork(Prefix)part=32– 5 = 27 • No.ofSubnetsthatcanbecreated=227-24=8,whichare givenbelow: • • AvailableSubnets: 202.70.64.0/27, 202.70.64.32/27, 202.70.64.64/27, 202.70.64.96/27, 202.70.64.128/27,202.70.64.160/27, 202.70.64.192/27, 202.70.64.224/27 • LetusSelectSubnetforC as202.70.64.0/27,then, • • SubnetMask=255.255.255.[11100000]= 255.255.255.224 • NetworkID =202.70.64.0 (Thefirstipaddressofnetwork) • BroadcastID=202.70.64.31(Thelastipaddressofnetwork) • • UsableHostIPrange= 202.70.64.1/27– 202.70.64.30/27 Compiled By: Ashish Kr. Jha
IPSub-netting • ForDept.A • No.ofhosts=23 • ForNo.ofbitsrequiredforhost(Suffix)part(H), • 2H-2≥ 23=>H =5(Select minimumvalueofH) • ie.Totalno. ofIPaddressesthisn/wcanprovide=25=32 • No.ofbitsforNetwork(Prefix)part=32– 5= 27 • No.ofSubnetsthatcanbecreated=227-24=8,whichare givenbelow: 202.70.64.0/ 27isalreadyusedforDepartmentC so cannotbeused. • • AvailableSubnets:202.70.64.32/27, 202.70.64.64/27,202.70.64.96/27, 202.70.64.128/27,202.70.64.160/27,202.70.64.192/27, • 202.70.64.224/27 • LetusSelectSubnetforAas202.70.64.32/27,then, • • SubnetMask =255.255.255.[11100000]= 255.255.255.224 • • • • • • NetworkID=202.70.64.32 BroadcastID=202.70.64.63 (Thefirstipaddressofnetwork) (Thelastipaddressofnetwork) UsableHostIPrange= 202.70.64.33/27–202.70.64.62/27 Compiled By: Ashish Kr. Jha
IPSub-netting • •ForDept.B • No.of hosts=16 • ForNo.of bitsrequiredforhost(Suffix)part(H), • 2H-2 ≥ 16 =>H = 5 (SelectminimumvalueofH) • ie.Totalno.ofIPaddresses thisn/wcanprovide = 25= 32 • No.ofbitsforNetwork(Prefix)part=32–5 =27 • No.of Subnetsthatcanbe created=227-24=8,whichare givenbelow: 202.70.64.0/27 and202.70.64.32/27arealreadyusedforDepartments CandA, so cannotbe used. • • AvailableSubnets:202.70.64.64/ 27,202.70.64.96/27,202.70.64.128/27, • 202.70.64.160/ 27,202.70.64.192/27, 202.70.64.224/27 • LetusSelectSubnetforB as202.70.64.64/27,then, • • SubnetMask=255.255.255.[11100000]= 255.255.255.224 • • • • • • NetworkID=202.70.64.64 BroadcastID =202.70.64.95 (Thefirstipaddressofnetwork) (Thelast ipaddressofnetwork) UsableHostIPrange= 202.70.64.65/27–202.70.64.94/27 Compiled By: Ashish Kr. Jha
IPSub-netting • •ForDept.D • No. ofhosts=13 • ForNo.ofbits requiredforhost(Suffix)part(H), • 2H-2≥13=>H=4 (Select minimumvalueofH) • ie.Totalno.ofIPaddressesthisn/w can provide=24= 16 • No. ofbitsforNetwork(Prefix)part=32–4=28 • No. ofSubnets that canbecreated=228-24 =16 • (IPaddressesupto202.70.64.95arealreadyoccupied) • LetusSelectSubnetforDas202.70.64.96/28,then, • • Subnet Mask =255.255.255.[11110000]=255.255.255.240 • • • • • • NetworkID=202.70.64.96 BroadcastID=202.70.64.111 (Thefirstipaddress ofnetwork) (Thelastipaddress ofnetwork) UsableHostIPrange=202.70.64.97/28 –202.70.64.110/28 Compiled By: Ashish Kr. Jha
#Assignment 1)AlargenumberofconsecutiveIPaddressesareavailableat202.70.64.0/19. SupposethatfourorganizationA,B, C, Drequest100,500,800and400 addressesrespectively.Howthesubnettingcanbe performedsothataddress wastagewillbe minimum? 2)BanijyaBank needtoallocate15IPsinHR department,30infinance Department,24incustomercareunitand25inATMmachines.Ifyouhave onenetworkofclassC rangepublicIPaddress.Describehowyouwill manageit? Compiled By: Ashish Kr. Jha
NetworkAddressTranslation(NAT) Compiled By: Ashish Kr. Jha
IPV4DatagramFormat Compiled By: Ashish Kr. Jha
IPV4DatagramFormat • Version(4bits):Specifythe IPProtocolversionofDatagram • HeaderLength(4bits):BecauseanIPV4datagramcancontaina variablenumberofoptionsthesefourbitsareneededtodetermine whereintheIPdatagramthedataactuallybegins(minimumHLEN • =20bytes). • TypeofService(8bits):TOSisincludedintheIPV4headerto allowdifferenttypesofIPdatagram(e.g.datagramparticularly requiringlowdelay,highthroughput,orreliability)tobe distinguishedfromother.Eg.Realtimedatarequiresfastdelivery, filetransferrequiresreliability. • Datagram Length(16bits):containsthetotallengthofdatagram (Header+Datagram) Compiled By: Ashish Kr. Jha
IPv4DatagramFormat • Identifier,flagandFragmentationoffset:used forIP fragmentation. • Identification(16bits):Datagramidentificationforfragments • DF: Don’t Fragment • MF:MoreFragments • FragmentOffset(13bits):locationofcurrentframeindatagram • • • • TimetoLive(8bits):toensurethatthedatagramdon'tcirculate foreverinthe network.LimitsPacketLife.Inpractice,justcounts hops.EachrouterdecrementstheTTLanduponhitting0,packetis discarded. • UpperlayerProtocol(8bits):These8 bitsareused toidentifythe next levelprotocol abovetheIPthatistoreceivethedatagram.TCP orUDP Compiled By: Ashish Kr. Jha
IPV4DatagramFormat • HeaderChecksum(16bits):used to detectaerrorthatmayoccur intheheader • SourceandDestinationaddress: Carries32bitsourceand destinationaddress • Options:used toidentify severaladditionalservices,notusedin • everydatagram • Data:containstheuserdata Compiled By: Ashish Kr. Jha
IPv6 Packet Format Compiled By: Ashish Kr. Jha
IPv6: Large Address Space Compiled By: Ashish Kr. Jha
IP Packet • An IP packet has two fundamental components: • IP header • contains many fields that are used by routers to forward the packet from network to network to a final destination. • identify the sender, receiver, and transport protocol and define many other Parameters. • Payload • Represents the information (data) to be delivered to the receiver by the sender. • Contains data & upper-layer information. Compiled By: Ashish Kr. Jha
IPv4 vs IPv6 Header Compiled By: Ashish Kr. Jha
IPv6 Header Fields • Based on certain rules, defines the following IPv6 header fields: • Version • used to indicate the version of IP. 2. Traffic Class • Indicates the desired service expected by the packet for delivery through routers. 3. Flow Label • Identifies a flow and it is intended to enable the router to identify packets. • Set by the source and should not be changed by routers along the path to destination. • Unique & powerful tool to IPv6 . Compiled By: Ashish Kr. Jha
IPv6 Header Fields contd... • Payload Length • Indicate the length of the payload to determine the length of the entire packet. • Next Header • Indicates either the first extension header (if present) or the protocol in the upper layer PDU (such as TCP, UDP, or ICMPv6). • Hop Limit • In IPv6, the IPv4 TTL (Time To Live) was renamed as Hop Limit because it is a variable that is decremented at each hop. • Source IPv6 Address • Stores the IPv6 address of the originating host. • Destination IPv6 Address • Stores the IPv6 address of the current destination host. Compiled By: Ashish Kr. Jha
IPv6 IPv6 IPv6 IPv6 IPv6 IPv6 IPv6 IPv6 IPv6 IPv6 IPv6 IPv6 IPv6 IPv6 IPv6 IPv4 IPv4 IPv4 IPv4 IPv4 IPv4 IPv4 IPv4 IPv4 IPv4 IPv4 IPv4 IPv4 IPv4 IPv4 Transition scenarios from IPv4 to IPv6 All IPv4 Mixed IPv4/IPv6 All IPv6 Compiled By: Ashish Kr. Jha
About IPv4 and IPv6 Compiled By: Ashish Kr. Jha
IPv4 Address Space Utilization *as of 3 February 2011 Compiled By: Ashish Kr. Jha
Available IPv4 Space in /8s Compiled By: Ashish Kr. Jha
1.Dual stack Compiled By: Ashish Kr. Jha
Dual stack cont.…. Dual method is an integration method where a node has implementation and connectivity to both Ipv4 and ipv6 network. If both ipv4 and ipv6 are configured on an interface, this interface is dual-stacked. Compiled By: Ashish Kr. Jha
Dual stack cont.…….. Although dual-stack may appear to be an ideal solution, it presents two major deployment challenges to enterprises and ISPs: • It requires a current network infrastructure that is capable of deploying IPv6. In many cases, however, the current network may not be ready and may require hardware and software upgrades. • IPv6 needs to be activated on almost all the network elements. To meet this requirement, the existing network may need to be redesigned, posing business continuity challenges. Compiled By: Ashish Kr. Jha
2(a) automatic tunneling Compiled By: Ashish Kr. Jha
2(b) configured tunneling Compiled By: Ashish Kr. Jha