350 likes | 494 Views
Testovanie š tatistických hypotéz. Parametre základného súboru nepoznáme . Môžeme však o nich vysloviť určité predpoklad y , ktoré formulujeme ako hypotézy a overujeme štatistickými postupmi - testovanie štitistických hypotéz (TH).
E N D
Parametre základného súboru nepoznáme. Môžeme však o nich vysloviť určité predpoklady, ktoré formulujeme ako hypotézya overujeme štatistickými postupmi - testovanie štitistických hypotéz (TH). Overovať možno nielen predpoklady o parametroch (napríklad strednej hodnote, rozptyle, smerodajnej odchylke), ale aj o tvare rozdelenia štatistického znaku (napr. testovanie zhody empirického rozdelenia s normálnym.
Príklady: • Chceme overiť, či sa priemerné výdavky na potraviny v r. 2000 významne zvýšili oproti r.1999, pričom na základe výberového skúmania predstavovali v r. 1999 34% a v r. 2000 36% • Výrobca reflektorov uvádza, že ich životnosť predstavuje 70 hodín. Za tým účelom sa uskutočnilo výberové skúmanie ana vzorke 20 reflektorov sa zistila priemerná životnosť 67 hodín a výberová smerodajná odchýlka 2 hodiny. Má výrobca pravdu ???
H0 : = 0, , všeobecne H0 : G= G0 Formulujeme východiskovú - nulovú hypotézu H0, ktorá vždy tvrdí zhodu toho čo porovnávame - testujeme Oproti nulovej hypotéze formulujeme alternatívnu hypotézu H1, napr. H1 : 0, , všeobecne H1 : GG0, obojstranný test resp. H1 : G > G0jednostranné H1 : G <G0testy Nulová a alternatívna hypotéza sa musia vzájomne vylučovať Základnépojmy
Parameter základného súboru G, o ktorom máme určitú hypotézu,nepoznáme, iba ho odhadujeme na základe výberového súboru, pomocou výberovej charkteristiky un . Rozhodnutie o zamietnutí resp. nezamietnutí nulovej hypotézy uskutočňujeme na základe náhodného výberu. Nemôžme ho urobiť s absolútnou presnosťou.Existuje riziko odhadu. Za predpokladu, že platí nulová hypotéza , rovná sa parameter G predpokladanej veličine G0. Keďže est. G = un, potom rozdiel = un - G0 je iba náhodnou chybou , spôsobenou náhodným výberom.
Ak však H0 neplatí , t.j. G G0 , potom sa rozdiel môže skladať • z náhodnej chyby • systematickej chyby, ktorá odráža skutočný rozdiel medzi • parametrom základného súboru G a jeho predpokladanou • veľkosťou G0 • = un - G0 = (un - G) + (G- G0) Náhodná chyba Systematická chyba - rozdiel V praxi nemožno zistiť , či rozdiel obsahuje iba náhodnú chybu, alebo aj systematickú. Ak je však malé pripisujeme ho iba náhodnosti výberu, ak prekročí určitú veľkosť, predpokladáme, že zahrňuje aj systematickú chybu - rozdiel.
Rozhodnutie o zamietnutí, resp. nezamietnutí H0predpokladá • znalosť kritickej hodnoty, ktorá všetky možné výsledkyrozdelí na dve časti : • pri rozdieloch menších ako kritická hodnota H0 nezamietame, • pri rozdieloch ako kritická hodnota, H0 zamietame. Veľkosť v konkrétnych prípadoch kolíše, je náhodnou veličinou,. Preto sa snažíme transformovať , ktoré je funkciou un a parametra základného súboru G na veličinu G, ktorá má známe teoretické rozdelenie (napr. Normované normálne, res. Studentovo či iné rozdelenie). G = f() pričom funkcia hustoty náhodnej premennej G je f(g) Vychádzame z platnosti H0:G = G0 a vypočítame testovaciu charakteristiku g = f(un , G0)
- hladina významnosti, základná hodnota je 0.05 1 - /2 /2 g1 g1 Obor prijatia hypotézy H0 kritický obor, obor zamietnutia H0 Rozhodnutie o výsledku testu:Môžeme potom nájsť také kritické hodnotyg1a g2náhodnej veličiny G, pre ktoré platí: P(g1 G g2) = 1 - alebo P(g1 G g2) = kritický obor, obor zamietnutia H0 kritický obor, obor zamietnutia H0
Rozhodnutie o výsledku testu, zamietnutí resp. nezamietnutí nulovej hypotézy H0 závisí od voľby • hladiny významnosti , • hladina významnosti rozdeľuje obor hodnôt • veličiny G na obor prijatia a obory zamietnutia H0
Pri testovaní sa všeobecne dopúšťame dvoch chýb:Chyba prvého druhu chyba druhého druhu 1 - … pravdepodobnosť prijatia správnej hypotézy 1 - …sila testu f(H0) f(H1) 1 - 1 - = P(H1/H0) = P(H0/H1)
Hypotéza Rozhodnutie Správna Nesprávna Nezamietam Správne rozhodnutie Chyba 2.druhu Zamietam Chyba 1.druhu Správne rozhodnutie Schematicky môžeme možné výsledky rozhodovacieho procesu pri testovaní štatistických hypotéz znázorniť takto: - chyba prvého druhu, ktorá vzniká pri zamietnutí správnej hypotézy - chyba druhého druhu, ktorá vzniká pri prijatí nesprávnej hypotézy
Všeobecný algoritmus testovania: • na základe vecne logického rozboru úlohyformulujeme nulovú (základnú) a alternatívnu hypotézu. • na základe naformulovaných hypotéz volíme testovacie kritérium • výpočet hodnoty testovacieho kritéria z údajov náhodného výberu • určíme obor prijatia a obor zamietnutia nulovej hypotézy, tj. vyhľadáme v tabuľkách alebo vypočítame kvantily rozdelenia testovacieho kritéria. • formulujeme záver a vyhodnotenie testu, na základe porovnania vypočítanej hodnoty testovacieho kritéria a kritických hodnôt.
Testy hypotéz o strednej hodnote Testy zhody strednej hodnoty so známou konštantou H0 : = 0 Nech štatistický znak X má v základnom súbore približne normálne rozdelenie ….N(, 2) Predpokladajme, že odhadovaná stredná hodnota sa rovná známej konštante 0, t.j. H0 : = 0 oproti alternatívnej hypotéze - pri obostrannom teste H1 : 0 - pri pravostrannom teste H1 : > 0 - priľavostrannom teste H1 : < 0
a) predpokladajme, že poznáme rozptyl základného súboru 2 (teoretický predpoklad) a n je väčšie ako 30 Potom vytvoríme ako testovaciu chrakteristiku náhodnú veličinu: má …N(0,1)
H0 prijímame H1 zamietame H0 zamietame H1 prijímame Obojstranný Pravostranný Ľavostranný Rozhodnutie o výsledku testu: Rozhodnutie Test
b)Ak nepoznáme rozptyl základného súboru, est 2 = s12 , a rozsah výberového súboru n > 30 môžme použiť N(0,1) Vyhodnotenie testu je rovnaké ako v predchádzajúcom prípade.
H0 prijímame H1 zamietame H0 zamietame H1 prijímame Obojstranný Pravostranný Ľavostranný Rozhodnutie o výsledku testu: Rozhodnutie Test
c)Ak nepoznáme rozptyl základného súboru, est 2 = s12 , a rozsah výberového súboru n 30 tmá Studentovo rozdelenie s v = (n-1) stupňami voľnosti
H0 prijímame H1 zamietame H0 zamietame H1 prijímame Obojstranný Pravostranný Ľavostranný Schéma vyhodnotenia testu: Rozhodnutie Test Ak znázorníme obor možných hodnôt testovacieho kritéria v absolútnej hodnote úsečkou takto: OP – OZ + OZ + + 0
Testy hypotéz o rozptyle Test zhody rozptylu s konštantou Testujeme nulovú hypotézu o zhode rozptylu základného súboru so známou konštantou , čo sformulujeme do zápisu: H0 : oproti alternatívnej hypotéze - pri obojstrannom teste H1 :
Rozhodnutie Test H0 prijímame H1 zamietame H0 zamietame H1 prijímame Obojstranný Testovacie kritérium má chí kvadrát rozdelenie s (n-1) stupňami voľnosti. Obor prijatia a obor zamietnutia nulovej hypotézy pre stupne voľnosti v = n-1 a hladinu významnosti, sú nasledovné: Schéma vyhodnotenia testu: a
Test zhody dvoch rozptylov Uvažujeme, dva náhodné výbery z normálnym rozdelením prvý o veľkosti n1 s výberovým rozptylom druhý s rozsahom n2 s výberovým rozptylom . Predpokladajme zhodu rozptylov dvoch základných súborov tj: H0 : oproti alternatívnej hypotéze pri obojstrannom teste H1 : Testovacím kritériom je veličina ktorá má rozdelenie F so stupňami voľnosti v = (n1 – 1);(n2 – 1) a hladinou významnosti .
Rozhodnutie Test H0 prijímame H1 zamietame H0 zamietame H1 prijímame Obojstranný Schéma vyhodnotenia testu: a
Testy zhody viac ako dvoch rozptylov Ak porovnávame zhodu viac ako dvoch rozptylov navzájom nezávislých náhodných výberov pochádzajúcich zo základných súborov s normálnym rozdelením , pričom parametre základných súborov nepoznáme, formulujme nulovú hypotézu v tvare: H0 : kdek je počet náhodných výberov s rozsahmi Nulovú hypotézu overujeme pomocou Bartlettovho, Cochranovho a Hartteyovho testu. Bartlettov test vychádza z predpokladu, že všetkých k výberov pochádza zo základného súboru s normálnym rozdelením s rovnakým rozptylom, je založený na výpočte testovacieho kritéria
Kde () je nestranný výberový rozptyl i-teho výberu, Veličina B má pri platnosti H0 približne rozdelenie s stupňami voľnosti (pokiaľ ni > 6, pre ). Nulovú hypotézu o zhode rozptylov na hladine významnosti prijímame, ak testovacie kritérium je menšie ako kritická hodnota . Bartlettov test je veľmi citlivý na dodržanie predpokladu normality rozdelenia náhodných chýb.
Ak majú všetky výberové súbory rovnaké rozsahy tj.= n, je k testovaniu nulovej hypotézy lepšie použiť Cochranov test, založený na testovacom kritériu: pričom ak je vypočítaná hodnota testovacieho kritériaG menšia ako kritická hodnota pre Cochranov test , nulovú hypotézu o zhode rozptylov prijímame (k je počet porovnávaných rozptylov, sú stupne voľnosti, je zvolená hladina významnosti).
Hartleyov test vychádza z tých istých predpokladov o zhode rozsahov výberových súborov a predpoklade normality rozdelenia a testovacie kritérium je definované vzťahom nulovú hypotézu prijímame ak vypočítaná hodnota je menšia ako kritická hodnota pre Hartleyov test , (k je počet porovnávaných rozptylov, sú stupne voľnosti, je zvolená hladina významnosti).
Testy hypotéz o zhode dvoch stredných hodnôt Pred samotným popisom testov parametrov z niekoľkých súborov je potrebné rozlíšiť či robíme úsudky z nezávislých alebo závislých súborov. U nezávislých súborov predpokladáme, že výber štatistických jednotiek z jedného základného súboru nezávisí na výbere štatistických jednotiek z druhého súboru. U závislých súborov naopak výber jednotiek z prvého súboru závisí na výbere jednotiek zo súboru druhého, pričom sa vytvára logický pár z jednotiek oboch súborov ( často sa používa označenie párový test ). Niekedy môže byť vytvorenie takéhoto páru dané priamo tým, že skúmame rovnaké jednotky za rôznych okolností, v rôznych obdobiach (napr. tržby pred a po reklame ) a pod.
Testy hypotéz o zhode dvoch stredných hodnôtpre nezávislé súbory Nech štatistický znak X1má v prvom základnom súbore približne normálne rozdelenie ….N(1, 12) Štatistický znak X2má v druhom základnom súbore tiež približne normálne rozdelenie ….N(2, 22) Predpokladajme, že odhadované stredné hodnoty 1 a 2 sú zhodné, t.j. testujeme H0 :1 = 2 oproti alternatívnej hypotéze H1 :1 2 pri obostrannom teste est 1 = … N(1, 12/n1) est 2 = … N(2, 22/n2)
► ďalší postup závisí na tom, čo platí pre rozptyly. Ak poznáme rozptyly základných súborov, čo je však vzácne a výberové súbory sú veľké (rozsahy výberových súborov sú väčšie ako 30), použijeme pre testovacie kritérium veličinu Rozhodnutie Test H0 prijímame H1 zamietame H0 zamietame H1 prijímame Obojstranný ktorá má normované normálne rozdelenie s parametrami 0,1 Schéma vyhodnotenia testu:
► ak nepoznáme rozptyly základných súborov a a výberové súbory sú veľké, použijeme ako testovacie kritérium veličinuu, v ktorej nahradíme rozptyly základných súborov ich odhadmi pomocou výberových rozptylov . Rozhodnutie Test H0 prijímame H1 zamietame H0 zamietame H1 prijímame Obojstranný ktorá má normované normálne rozdelenie s parametrami 0,1 Schéma vyhodnotenia testu:
► ak nepoznáme rozptyly základných súborov, ale môžeme aspoň predpokladať ich zhodu (o reálnosti tohto predpokladu sa presvedčíme testom o zhode rozptylov) a výberové súbory sú malé (rozsahy sú menšie ako 30), použijeme ako testovacie kritérium Rozhodnutie Test H0 prijímame H1 zamietame H0 zamietame H1 prijímame Obojstranný ktorá má Studentovo t rozdelenie s (n1 + n2 – 2) stupňami voľnosti. Vypočítané testovacie kritérium t porovnávame s kvantilmi Studentovho t rozdelenia pre zvolenú hladinu významnosti a v = ( n – 1 ) stupňov voľnosti. Schéma vyhodnotenia testu:
Zhoda dvoch stredných hodnôt pre závislé súbory. Predpokladajme, že máme dva závislé súbory s normálnym rozdelením a rovnakými rozsahmi n1 = n2 = n. Pre každú dvojicu ( pár ) údajov vypočítame rozdiel a vypočítame aritmetickýpriemer a rozptyl : Nulovú hypotézu pre posúdenie zhody dvoch stredných hodnôt pre závislé súbory naformulujeme v tvare H0 :
Rozhodnutie Test H0 prijímame H1 zamietame H0 zamietame H1 prijímame Obojstranný oproti alternatívnej hypotéze - H1 : Testovacím kritériom je veličina ktorá má Studentovo t rozdelenie s v = (n – 1) stupňami voľnosti. Obory prijatia a zamietnutia nulovej hypotézy sú definované takto: Schéma vyhodnotenia testu: