40 likes | 55 Views
A matroid M is a set E with independent subsets I, defined by specific rules. Discover examples like vectorial and graphic matroids. Learn key terms like bases and circuits. Explore different ways to define and understand matroids in mathematics.
E N D
What is a matroid? A matroid M is a finite set E, with a set I of subsets of E satisfying: 1.The empty set is in I 2.If X is in I, then every subset of X is also in I 3.If U, V are in I, with |U|<|V| then there is an x in V\U (V without U) such that U union {x} is in I. Write it as M = (E, I), say. E is called the ground set of M I are the independent subsets of E A matroid is an abstraction of Kruskal's algorithm.
Examples of matroids Example 1 - Vectors Take E as a set of vectors, and I as the set of linearly independent subsets of vectors of E. So M = (E, I) is a matroid, known as a vectorial matroid. Example 2 - Graphs Take a graph G, with edges E. Let I be all the subsets of E without any cycles (circuits), ie. the subforests of G. The M = (E, I) is a matroid, known as the graphic matroid. A matroid can be defined in many ways. The vector space analogy adopted earlier is just one way.
Some more notation Useful terms: Given a matriod M = (E, I), a subset of E that is not in I is called dependent. A minimal dependent set is known as a circuit. A basis is a maximal independent set, ie. the the maximal feasible set. The collection of bases is denoted B(M) or just B. 1 1 3 has a circuit 2 2 4 3 5
Some more notation 1. For vectors, a basis is a set of linearly independent vectorsthat span E, such as {(0,0,1),(0,1,0),(1,0,0)} is a basis for 3, for example. 2. For graphs, a basis is a spanning tree. The definition of a matroid given above is just one way of describing a matroid, and there are other ways: Let E be a set, I be a collection of subsets of E. Then I is a collection of independent sets of a matroid M=(E,I) iff I satisfies axioms 1,2 as given before, and 3' as follows: 3') If A is any subset of E, then all maximal subsets X of A with X in I have the same cardinality.