330 likes | 377 Views
QI primitives for quantum-limited measurement David Wineland, Time & Frequency Division, NIST, Boulder. Summary: Quantum information experiments with trapped ions Ramsey interferometer, angular momentum picture entangled states for increased precision * spin squeezing
E N D
QI primitives for quantum-limited measurement David Wineland, Time & Frequency Division, NIST, Boulder
Summary: • Quantum information experiments with trapped ions • Ramsey interferometer, angular momentum picture • entangled states for increased precision * spin squeezing * spin “Schrödinger cat” states • efficient detection with ancilla qubits, * application to ion clocks QI primitives for quantum-limited measurement David Wineland, Time & Frequency Division, NIST, Boulder
Some QI experiments with trapped ions ion trap electrodes 3-D harmonic well Use quantized motional mode as “data bus” (J. I. Cirac, P. Zoller, Phys. Rev. Lett. 74, 4091 (1995) Internal-states (qubits) Motional modes (e.g., center-of-mass mode) • • • • n=3 n=2 n=1 n=0 Motion quantum states
2P3/2 2P1/2 9Be+ qubits 2S1/2 electronic ground level hyperfine states F = 2, mF = 0 F = 1,mF = -1 B 119 G (coherence time ~ 10 s) two-photon stimulated-Raman transitions (vs. -waves) ~1.21 GHz
2P3/2 2P1/2 9Be+ qubits 2S1/2 electronic ground level hyperfine states F = 2, mF = 0 F = 1,mF = -1 B 119 G (coherence time ~ 10 s) two-photon stimulated-Raman transitions spin/motion coupling • • • • ~1.25 GHz ~5 MHz
2P3/2 2P1/2 photon-count histograms | • • 0 10 20 30 | • • 0 10 20 30 Measurement: State-dependent laser scattering (“cycling” transition)
ei enclosed area A Geometric phase gates: phase-space diagram for motional mode wavefunction: p A x D(+) = D()D()exp{-i Im(*)} (concatenate small displacements) make force state-dependent to realize phase gate, e.g,: 12 12 12 i12 12 i12 12 12 • use optical dipole forces General formalism: Milburn, Schneider, James (1999) Sørensen & Mølmer (1999, 2000) Solano, de Matos Filho, Zagury (1999)
Optical dipole forces |e ion harmonic motion frequency m r b >> m |↓, |↑ basic idea: use gradient of Stark shift to apply forces F, F to |↓ and |↑ b = r Polarization/intensity gradient standing wave b r
Dipole forces to displace ions in phase space |e ion harmonic motion frequency m r b >> m |↓, |↑ basic idea: use gradient of Stark shift to apply forces to |↓ and |↑ b - r = m + “walking” standing wave example: make F = - F
2-ion phase-space displacement (e.g., stretch mode): b - a = stretch + apply forces for t = 2/ p assume F = - F “stretch” mode A ||: || i || || i || x in general: i ei moving optical-dipole potential grating U(t= tgate) = exp[-i(/4)z1z2] HI = z1z2 (up to Z rotation) For N qubits H = JiJi, Ji = k ki i = {x,y,z} p ||: 2- qubit gate errors: 1 1 x 10-3 C. J. Ballance et al., arXiv:1512.04600 0.8 0.4 x 10-3 J. P. Gaebler et al., arXiv:1604.00032 || || || || x
Mach-Zehnder interferometer: (e.g., for photons) incoming photon f 1 detect photon in path 1 or 2 50/50 beam splitters 2 Carl Caves; this AM review: V. Giovannetti, S. Lloyd, L. Maccone Science 306, 1330 (2004).
Ramsey interferometry with qubits: /2 pulses 50/50 beam splitters applied radiation (“/2 pulses”) frequency 0 /2 pulse /2 pulse M T measure N 0 0 /2 “Signal” “shot noise” limit (independent of - 0 projection noise only) Noise Õ ((Õ - Õ)2)1/2
Ramsey interferometer, angular momentum picture J = iSi (Si = ½, equivalent to ensemble of two-level systems) (R. Feynman et al. J. Appl. Phys. 28, 49 (1957)) e.g., Hi = ћ SzBz intial = …N = J = N/2, mJ = -N/2 (“coherent spin state”) (in rotating frame of applied field): z Bz = (o - )/ Bz = (o - )/ (Brf >> Bz) Brf/2 y J(0) x (o - )T = /2 Free precession Second Ramsey pulse First Ramsey pulse N Ñ(tf) Õ = Ñ(tf) = Ĵz + JÎ Ñ(tf) = N/2(1 + cos(o - )T) 0 0 /2 = (o - )T
Measurement uncertainty relations: Uncertainty relation for operators: For operators Õ1, Õ2, Schwartz inequality (*) Õ1Õ2 ½|[Õ1,Õ2]| (measurement fluctuations on identically prepared systems) e.g. for Õ1 = x, Õ2 = p position/momentum uncertainty relation Uncertainty relations for parameters and operators: For operator Õ() ( parameter) Õ |dÕ/d| , Õ/ |dÕ/d| Example: In (*), let Õ1 = Õ, Õ2 = H (Hamiltonian) ÕH ½|[Õ,H]| But, ћ dÕ/dt = i[H,Õ] + ћÕ/t ÕH ½ ћ | dÕ/dt| (for Õ/t = 0) Õ = |dÕ/dt| t, H t ½ ћ
Quantum limits to (angular momentum) rotation angle measurement For (0) = J, -J (“coherent” spin state) Uncertainty relation: y Jz = - N/2 x consider rotations about x axis: z y observed for coherent spin states: • Itano et al., PRA 47, 3554 (1993). • Santarelli et al., PRL 82, 4619 (1999). • … “projection noise” x x = Jy/Jz = J/|J| = N-½ independent of o -
coherent spin state J(T) J(0) Angle sensitivity = WANT: “spin-squeezed” state J J(T) Jz J(0) J(T) B. Yurke et al., PRA33, 4033 (1986)
Generate spin squeezing with HI= Jz2, U = exp(-itJz2) • Sanders, Phys. Rev. A40, 2417 (1989) (nonlinear beam splitter for photons) • Kitagawa and Ueda, Phys. Rev. A47, 5138 (1993) (potentially realized by Coulomb interaction in electron interferometers) • Sørensen & Mølmer, PRL 82, 1971 (1999) (trapped ions) • Solano, de Matos Filho, Zagury PRA59, 2539 (1999) (trapped ions) • Milburn, Schneider and James, Fortschr. Physik 48, 801 (2000) (trapped ions) HI= (Jz) Jz U 1/2J |J| = = signal-to-noise improvement J2J J/ |J|
= /6 After /2 pulse about BRF Jz 0.9 anti-squeezing 0.8 0.7 squeezing 0.6 0.5 0.4 /2 Standard quantum limit Simple experiment, N = 2 (9Be+): V. Meyer et al., PRL 86, 5870 (2001) apply HI Jx2. For N = 2, cos + sin (entangled state!) BRF J(0) |J| = J2J But, J(0) shrinks with squeezing
J J coherent state squeezed state Jz(tf) Jz(tf) -J -J = (o - )T 0 0 1.07, N = 2 for perfect V. Meyer et al., PRL 86, 5870 (2001)
J. G. Bohnet, B. C. Sawyer, J. W. Britton, M. L. Wall, • M. Rey, M. Foss-Feig, J. J. Bollinger • arXiv:1512.03756, accepted for Science HI= (Jz) Jz = 2.5 (2), N = 85
K. C. Cox, G. P. Greve, J. M. Weiner, and J. K. Thompson, PRL 116, 093602 (2016) 87Rb, | = |F=2, mF = 2, | = |3,3 measure Jz (via cavity frequency pulling) project to squeezed state = 2.3 (3) = 7.7 (3) N = 4 x 105
O. Hosten, N. J. Engelsen, R. Krishnakumar, M. A. Kasevich Nature 529, 505 (2016) 87Rb, | = |F=2, mF = 0, | = |3,0 N = 5 x 105 = 10.1(2)
Ramsey interferometry of J = 0 states: R1,2,…N(/2) entangling pulse T M measure |J| = 0 ! spin “Schrödinger cat” states After second Ramsey pulse, measure parity operator: (J. Bollinger et al., Phys. Rev. A54, R4649 (1996)) (two values possible: 1, -1)
e.g., N = 6 Õ = N - N (nonentangled) Õ = parity (entangled) 6 2 0 -6 Õ 0 2 ( - 0)T Õ (single measurement) = 1/N, independent of ( - 0)T (V. Meyer et al., PRL 86, 5870 (2001) (N = 2))
Ramsey interferometry with two entangling pulses (D. Leibfried et al. Science ’04, Nature ‘05) entangling “/2” pulse entangling “/2” pulse M T t measure all ions fluoresce no ions fluoresce
S/N = C “win” if C > C Entangled state interferometry: (D. Leibfried et al. Science 2004, Nature 2005) “Signal” Noise N = 1 C = 0.84(1) > 3-1/2 = 0.58 = 1.45(2) N = 3 N = 4 T. Monz et al., PRL 106, 130506 (2011) > 1 for N = 14 N = 5 C = 0.419(4) > 6-1/2 = 0..408 = 1.03(1) N = 6
S/N = C “win” if C > C Entangled state interferometry: But! assumptions above: perfect probe oscillators, noise = projection noise Restrictions: Huelga, Macchiavello, Pellizzari, Ekert, Plenio, Cirac PRL 79, 3865 (1997) (phase decoherence of atoms) DJW et al. NIST J. Research 103, 259 (1998) André, Sørensen, Lukin, PRL 92, 230801 (2004) (phase decoherence of source radiation) C. W. Chou et al., PRL 106, 160801 (2011) (D. Leibfried et al. Science 2004, Nature 2005) “Signal” Noise N = 1 Future: More and better Apply entangled states in accurate clocks …. C = 0.84(1) > 3-1/2 = 0.58 = 1.45(2) N = 3 N = 4 T. Monz et al., PRL 106, 130506 (2011) > 1 for N = 14 N = 5 C = 0.419(4) > 6-1/2 = 0..408 = 1.03(1) N = 6
Coulomb interaction 1P1 2P3/2 3P0 optical qubit = 267 nm (F=1, mF = -1) = 167 nm 2S1/2 Be+ hyperfine qubit (F=2, mF = -2) 1S0 Efficient detection with ancilla qubits (Al+ optical clock experiment, T. Rosenband et al.) transfer information to 9Be+ P. O. Schmidt et al., Science309, 749 (2005)
Coulomb interaction 3P1 Efficient detection with ancilla qubits (Al+ optical clock experiment, T. Rosenband et al.) 2P3/2 3P0 2 1 0 n 1S0 Cool ions to ground state with Be+ |Be|n=0 P. O. Schmidt et al., Science309, 749 (2005)
Coulomb interaction 3P1 Efficient detection with ancilla qubits (Al+ optical clock experiment, T. Rosenband et al.) 2P3/2 3P0 2 1 0 n 1S0 If = |3P0|Be|n=0 P. O. Schmidt et al., Science309, 749 (2005)
Coulomb interaction 3P1 Efficient detection with ancilla qubits (Al+ optical clock experiment, T. Rosenband et al.) 2P3/2 3P0 2 1 0 n 1S0 |n=0 Is “QND” measurement; can repeat to increase Fidelity F = 0.85 0.9994 D. Hume et al., Phys. Rev. Lett. 99, 120502 (2007) P. O. Schmidt et al., Science309, 749 (2005)
(some things) to do: reduce errors (2-qubit gate) 10-4 scale up apply entangled states to accurate clocks …….
NIST IONS, February, 2016 Back row: Dave Leibrandt, John Bollinger, Christoph Kurz, Kevin Gilmore, Shon Cook, Raghu Srinivas, Dave Hume, David Allcock, Shaun Burd, Jwo-Sy Chen, Jim Bergquist, Sam Brewer, Dave Wineland Front row: Justin Bohnet, Kyle McKay, Yao Huang, James Chou, Susanna Todaro, Katie McCormick, Daniel Slichter, Didi Leibfried, Aaron Hankin, Stephen Erickson, Andrew Wilson, Yong Wan, Ting Rei Tan