1 / 14

Numerical wave breaking by a compressible finite volume method

Golay Frédéric, Helluy Philippe, Seguin Nicolas. Numerical wave breaking by a compressible finite volume method. F. Golay P. Helluy N. Seguin. Plan. Mathematical Model Numerical method Test case Numerical result Solitary wave propagation Influence of the pressure law Breaking

myles-evans
Download Presentation

Numerical wave breaking by a compressible finite volume method

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Golay Frédéric, Helluy Philippe, Seguin Nicolas Numerical wave breaking by a compressible finite volume method

  2. F. Golay P. Helluy N. Seguin Plan • Mathematical Model • Numerical method • Test case • Numerical result • Solitary wave propagation • Influence of the pressure law • Breaking • Shallow water model • Conclusion

  3. F. Golay P. Helluy N. Seguin Mathematical model ( ) = g j - re - g j p j p ( ) 1 ( ) ( ) 1 1 1 g + p ( p ) = j + j - ( 1 ) = c g j - g - g - ( ) 1 1 1 r w a g j p j g p g p ( ) ( ) w w a a = j + j - ( 1 ) g j - g - g - ( ) 1 1 1 w a where Sound velocity Equation Of State: stiffened gaz (Abgrall-Saurel, 1996)

  4. F. Golay P. Helluy N. Seguin Numerical model Ci Cj The system has the form of a system of conservation laws We solve it by a standard finite volume scheme • Second order extension:MUSCL • No pressure oscillation thanks to a special non-conservative discretisation of the fraction evolution.

  5. F. Golay P. Helluy N. Seguin Test Case In the air sound velocity c=20m/s, p=105 Pa pa=-99636 Pa, ga=1.1 In the water sound velocity c=20m/s, p=105 Pa pw=263636 Pa, gw=1.1

  6. F. Golay P. Helluy N. Seguin Numerical results: solitary wave propagation 1/2 Mesh: 2000x150 Initial velocity

  7. F. Golay P. Helluy N. Seguin Numerical results: solitary wave propagation 2/2 Kinetic energie

  8. F. Golay P. Helluy N. Seguin Numerical results: Influence of the pressure law 1/2 Mesh 100x20 horizontal velocity*density c=20 m/s c=100 m/s c=400 m/s

  9. F. Golay P. Helluy N. Seguin Numerical results: Influence of the pressure law 2/2 Mesh 100x20 vertical velocity*density c=20 m/s c=100 m/s c=400 m/s

  10. F. Golay P. Helluy N. Seguin Breaking 1/2

  11. F. Golay P. Helluy N. Seguin Breaking 2/2

  12. F. Golay P. Helluy N. Seguin Shallow water model 1/2

  13. F. Golay P. Helluy N. Seguin Shallow water model 2/2

  14. F. Golay P. Helluy N. Seguin Conclusion • Simple and efficient method: no tracking of the interface, • The same code can be used for compressible multifluid flows. • Improvements: • Automatic mesh refinement, • Low Mach preconditionning for more physical results, • Dispersive model for the shallow water model.

More Related