690 likes | 728 Views
Chapter 11 I schemia-reperfusion injury. Zhao Mingyao BMC.ZZU. 1955, Sewell ligated coronary artery of dog, restore blood flow after deligation. What happened ?. Brief history. Simple phenomenon. Clinical :. Shock , DIC Bypass surgery Fibrinolytic therapy
E N D
Chapter 11 Ischemia-reperfusion injury Zhao Mingyao BMC.ZZU
1955,Sewell ligated coronary artery of dog, restore blood flow after deligation. What happened ? Brief history Simple phenomenon
Clinical: Shock , DIC Bypass surgery Fibrinolytic therapy Cardiopulmonary operation Organ transplantation
Concept of Ischemia-Reperfusion Injury The restoration of blood flow after transient ischemia may induce further reversible or irreversible cellular injury
Features of IRI: 1. reversible irreversible 2. Massive in organs 3.participating factors oxygen paradox calcium paradox pH paradox
Perfusion fluid Perfusion fluid effect Normal O2 supply Without O2 O2 paradox Deteriorate injury with Ca2+ Ca2+paradox Without Ca2+ Correcting acidosis Acidosis pH paradox
Section 1 Etiology of IRI 1. Duration of ischemia 2.Dependency on O2 supply 3.The condition of reperfusion: reperfusion pressure, speed, T, Na+, Ca2+, K+, Mg2+
Effect of Ischemic time on perfusion arrhythmia of rat incidence rate Ischemic time
Concept and Types of FR Free radicals are atoms or molecules with unpaired electrons in their outer orbital Non-lipid free radicals Lipid free radicals
(1) Oxygen free radical(OFR) ---Induced by O2 Classification O·-2 OH· 1O2 Types Rective Oxygen Species (ROS) OFR H2O2 peroxynitrite
(2) Lipid radicals types: L· LO· Alkoxyl LOO· Cl·、CH3 ·(Methane )、 NO ·
1. Generation of free radical 1) Initiation 2) Propagation 3) Degradation
(1)Production and scavenging of OFR 1) Origin of O·-2: ①Mt ②Natural oxidation of some substances ③Enzyme catalysis ④Toxin acting on cell
2)Production process of OFR O2 + e O2 SOD O2+ 2e + 2H+ • H2O2 Cytaa3 O2 + 3 e + 3H+ HO +H2O H2O2 nse 2 H2O O2 + 4 e + 4H+ Single electron reduction Single electron reduction of O2
O2-+ H2O2 O2 + OH +OH Haber-Weiss reaction(withoutFe2) SLOW
Fenton typeofHaber-Weiss reaction( with Fe3 ) O2-+ H2O2 O2 + OH +OH Fe2 Fast What significance ???
3)Scavenging of OFR Water-soluble Lipid-soluble ① Low molecule scavenger ② Enzymatic scavenger
①low molecule scavenger *hydrofacies of intra- or extracell: Cysteine、Vit C、 Glutathione Cytosol :NADPH *Cellular lipid: Vit E、 Vit A
②Enzymatic scavenger Superoxide dismutase (SOD) Catalase (CAT) Glutathione peroxidase (GSH-Px)
Dismutation reaction Single electron reduction of O2 SOD • H2O2 + O2 2O2+ 2H+ H2O2 nse ?
GSH-Px: containing selenium scavenging large biological molecule peroxide LOOH + 2GSH GSSG + LOH + H2O GSH-Px GSH reductase GSSG + NADPH + H+ 2GSH + NADP+
1) Mitochondria pathway Single electron reduction of O2 ↑ Ca2+ enter Mt • O-2· ↑ hypoxia MnSOD
2) Xanthine oxidase(XO) pathway↑ Xanthine oxidase (XO )10% xanthine dehydrogenase(XD) 90% Ca 2 + sensitive enzyme
Ischemia: Hypoxathine↑↑ ATP degradation O2 Reperfusion: (1)Ca2+→protease xanthine + O·-2+ H2O2 XD XO (2)restore O2 O2 O·-2+ H2O2+ uric acid XO role in formation of OFR OH ·
3)Neutrophil pathway hexose bypass activation C3,LTB4 Activates NP Respiratory burst NADH(I) NADPH(II) NADH oxidase H+ + O-2·+H2O2 + O2 NADPH oxidase
4) Catecholamine autooxidation pathway Vanillylmandelic acid (VMA) Methyl transferase Adr • monoamine oxidase 80% during stress Renal excretion O2 -· adrenochrome
(3) The detrimental effects of OFR to tissue 1)Lipid membrane 2)Protein: channel, pump, 3)Enzyme 4)Nuclear acid : DNA
Biomacromolecle crosslinkage Protein ~ Lipid –pro ~ Two sulfur ~ Protein break -S-S- OH OH HO HO CH3-S- Lipid-lipid ~ O MDA released by oxidated fatty acid Amino acid oxidation fatty acid oxidation Malondialdehyde (MDA)
DNA disruption and chromosome aberration induced by OH about 80% damage OH +2300 (hydroxyl)
1. Ca 2+ transportation and distribution Ca 2+ Ca 2+ Ca2+ binding Pr Ca2+pump SR Ca 2+Channel Na + - Ca 2+ cotransportor Mt
2. Mechanism of ~ ① Na+ - Ca2+ exchange↑: H+-Na+ ↑; Na+ - Ca2+ ↑(forward mode reverse mode); PKC triggers ②ATP ↓: mitochondria damage, energy precursor ↓ ③Membrane permeability ↑ ④catecholamine ↑
NE H+ Ca2+ α1 P1 Gq PLC Na+ DG IP3 PKC Ca2+ Ca2+ SR filament PKC activating Na+/Ca2+ exchanger indirectly
3. The detrimental effects ofCa2+overload to tissue (1) Activating Ca2+-activated protease (2) Defects in membrane permeability activating phospholipase A2 OFR (3) Hypercontracture and reperfusion arrhythmia cellular electrical action (4)Mitochondria damage
1.The role of neutrophil activated ①Swelling ②Adhesion ③Infiltration ④Release: arachidonic acid, PAF, lysosomal enzyme ⑤Respiratory burst ⑥Cell adhesion molecules(CAM): selectins, integrins, immunoglobulin superfamily
2. Mechanism of no-reflow phenomenon Vaso-endothelial damage Vaso-endothelial edema Occlusion of microvascular luman
Rulo: 肉膜
3.NO and ONOO- production NO in VEC(eNOS), little, physiological NO in inflammatory cell(iNOS), rich, cytotoxic (Mt respiration, aconitase activity, DNA synthesis) and OONO- peroxynitrite
Free radicals with a nitrogen center ① Nitric oxide(NO) O2 NOS L-arginine L-citrulline + NO NADPH NADP+
② Peroxynitrite, ONOO- NO+O2.- acidic NO2. + OH.+ H+ ONOO- H2O Killing bacterial & tumor