1 / 5

畫線演算法 93610020 葉書豪 資工四

畫線演算法 93610020 葉書豪 資工四. Naive algoritm. A naïve line-drawing algorithm dx = x2 - x1//x 軸的間隔 dy = y2 - y1//y 軸的間隔 for x from x1 to x2 { y = y1 + (dy) * (x - x1)/(dx) plot(x, y) }// 從起始點根據斜率公式一點一點畫到終點 (dy) )/(dx) 即為協率. DDA algorithm. 根據 x 軸和 y 軸的增量來畫出一條線

naeva
Download Presentation

畫線演算法 93610020 葉書豪 資工四

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 畫線演算法93610020 葉書豪 資工四

  2. Naivealgoritm • A naïve line-drawing algorithm dx = x2 - x1//x軸的間隔 dy = y2 - y1//y軸的間隔 for x from x1 to x2 { y = y1 + (dy) * (x - x1)/(dx) plot(x, y) }//從起始點根據斜率公式一點一點畫到終點 (dy) )/(dx)即為協率

  3. DDA algorithm • 根據x軸和y軸的增量來畫出一條線 x_incremennt = float(dx) / float(steps); y_incremennt = float(dy) / float(steps); 假如x的間距大於 y的間距 steps = fabs(dx); 不是的話 steps = fabs(dy); 這個演算法不是一個點一個點畫上去的 而是利用各+0.5的長度直線來趨近一條斜線

  4. Bresenhamalgorithm • Bresenham演算法對斜率介於0至1之間的直線繪製為(假設直線兩端點為(x,y)和(x,y), xx, yy): • 輸入直線兩端點(x,y)及(x,y)。 • i=1; • Δx=x-x; Δy=y-y; P1=2Δy-Δx; (x1,y1)=(x,y); • Const1=2(Δx-Δy); Const2=-2Δy; • while (i≠Δx) { • if (Pi0) { • (xi+1,yi+1)=(xi+1,yi+1); • Pi+1=Pi+Const1; } • else { • (xi+1,yi+1)=(xi+1,yi); • Pi+1=Pi+Const2; } • i++; • } • 在此處2(Δx-Δy)和2Δy僅計算一次,其餘運算皆為整數的加減運算。 • 目前我們只討論斜率介於0和1之間的直線繪製,當直線斜率介於1至無窮大時,我們可經由增加yi之值(yi+1=yi+1)來求xi;

  5. 效率比較 • 基本上畫出來的 速度方面來上 都很快速 • 相差不遠 所以速度沒什麼影響 • 主要是線段的趨近方面 • Bresenham演算法會比較平順 • Naïve會比較一段一段的 而DDA演算法則比較粗一點 但是已經比較趨近線的平滑性了

More Related