1 / 45

Chin-Mei Fu Department of Mathematics Tamkang University, Tamsui, Taipei Shien, Taiwan.

Kite-Designs Intersecting in Pairwise Disjoint Blocks. Chin-Mei Fu Department of Mathematics Tamkang University, Tamsui, Taipei Shien, Taiwan. Wen-Chung Huang Department of Mathematics Soochow University Taipei, Taiwan. a. c. d. b.

naiara
Download Presentation

Chin-Mei Fu Department of Mathematics Tamkang University, Tamsui, Taipei Shien, Taiwan.

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Kite-Designs Intersecting in Pairwise Disjoint Blocks Chin-Mei Fu Department of Mathematics Tamkang University, Tamsui, Taipei Shien, Taiwan. Wen-Chung Huang Department of Mathematics Soochow University Taipei, Taiwan.

  2. a c d b • Denote the kite by (a,b,c;d)

  3. Kite-design A kite-design of order n is a pair (X, Ҝ), where X is the vertex set of Kn and Ҝ is an edge-disjoint decomposition of Kn into copies of kites. If kite-design of order n exists then Then n≡0,1 (mod 8)

  4. (1, 2, 4; ) (mod 7) • n = 8 1 2 (1, 2, 4; ) 3 KD(8)={(1, 2, 4;),(2,3,5;),(3,4,6;), (4,5,7;),(5,6,1;),(6,7,2;),(7,1,3;)}

  5. (1, 2, 5; 7) (mod 9) • n = 9 3 1 2 (1, 2, 5; 7) 4 KD(9)={(1,2,5;7),(2,3,6;8),(3,4,7;9),(4,5,8;1), (5,6,9;2),(6,7,1;3),(7,8,2;4),(8,9,3;5),(9,1,4;6)}

  6. Intersection Problem for kite-designs: Find all possible values k such that there are two kite-designs, (V, B1) and (V, B2), of order n with |B1  B2|=k.

  7. Example: KD(8); • B1={(1,2,4;),(2,3,5;),(3,4,6;), (4,5,7;),(5,6,1;),(6,7,2;),(7,1,3;)} • B2={(1,2,4;3),(5,2,3;),(,4,6;3),(4,5,7;),(6,1,5;),(6,7,2;),(3,7,1;)}} B1B2={(4,5,7;),(6,7,2;)} |B1B2|=2 • (4,5,7;) and (6,7,2;) has a common vertex 7

  8. In 2004, Yeow Meng Chee give: Two STS (X, A) and (X, B) are said to intersect in m pairwise disjoint blocks if |AB|=m and all blocks in AB are pairwise disjoint He prove that the spectrum of the problem in order v is {0,1,…,(v-1)/3} if v  1 (mod 6); {0,1,…,v/3} if v  3 (mod 6); for v13. {1},{0,1},{0,1,3} for v=3,7,9, respectively

  9. Kite-design Intersecting in Pairwise Disjoint Blocks Find all possible values k such that there are two kite-designs of order n, (V, B1) and (V, B2), in which |B1  B2|=k and all blocks in B1  B2 are pairwise disjoint.

  10. Id(n) = {k| there exist two kite-designs of order n, (V, B1) and (V, B2), in which |B1  B2|=k and all blocks in B1  B2 are pairwise disjoint} • Let Jd(n) = {0,1,…,[n/4]} Lemma (Billington) {0, 1}Id(n), for all n 0 or 1 (mod 8).

  11. Lemma: Id(9)=Jd(9), Id(17)=Jd(17), Id(16)=Jd(16), Id(32)=Jd(32), Id(K24\K8)=Jd(K24\K8), Id(24)=Jd(24), Id(K40\K8)=Jd(K40\K8), Id(40)=Jd(40). Pf: n=9. Let K={(1,2,3;4),(5,6,7;8),(4,8,9;6),(2,5,8;1),(1,9,7;3),(3,8,6;1),(1, 5,4;6),(4,7,2;6),(3,5,9;2)}. Let π=(1,2)(5,6). πK={(2,1,3;4),(6,5,7;8),(4,8,9;5),(1,6,8;2), (2,9,7;3),(3,8,5;2),(2, 6,4;5),(4,7,1;5),(3,6,9;1)}. Then K∩πK={(1,2,3;4),(5,6,7;8)}. From the result and above Lemma, we obtain I(9)=J(9). ⋄

  12. Ex: 0Id(K2,2,2) 1 1’ 1 1’ 1 1’ 2 3’ 2 3’ 2 3’ 2’ 2’ 2’ 3 3 3

  13. 1 1’ 1 1’ 3’ 2 3’ 2 3’ 2’ 2’ 2’ 3 3 1 1’ 2 3

  14. 1 1 1’ 2 3’ 2 3’ 2’ 2’ 3 1 1’ 1’ 2 3’ 3 2’ 3

  15. 1 1 1’ 2 3’ 2 3’ 2’ 2’ 3 KD1(K2,2,2)={(1,3,2;1’),(3,2’,1’;3’),(1,2’,3’;2)} 1 1’ 1’ 2 3’ 3 2’ 3

  16. 1 1’ 1 1’ 1 1’ 2 3’ 2 3’ 2 3’ 2’ 2’ 2’ 3 3 3

  17. 1 1’ 1 1’ 2 2 3’ 2 3’ 2’ 2’ 3 3 3 1 1’ 3’ 2’

  18. 1 1’ 1 1’ 2 2 3’ 2 3’ 2’ 2’ 3 3 3 1 1’ 3’ 2’

  19. 1’ 1 1’ 2 2 3’ 2’ 2’ 3 3 KD2(K2,2,2)={(1’,3’,2’;1),(3’,2,1;3),(1’,2,3;2’)} 1 1 1’ 2 3’ 3 3’ 2’

  20. KD1(K2,2,2)={(1,3,2;1’),(3,2’,1’;3’), (1,2’,3’;2)} • KD2(K2,2,2)={(1’,3’,2’;1),(3’,2,1;3), (1’,2,3;2’)} 0Id(K2,2,2)

  21. Ex: 0Id(K2n,2n,2n) • Take a Latin square of order n, it is C3-decomposition of Kn,n,n • Replacing each C3 by K2,2,2, and from 0Id(K2,2,2), we have 0Id(K2n,2n,2n)

  22. If 2m  0 or 2 (mod 6), 2m  6, there exist GDD(2m, 3,2) • If 2m  4 (mod 6), 2m  10, there exist GDD(2m, 3,{2,4*})

  23. n=8k+1 2k

  24. 2k0 or 2 (mod 6)

  25. K9 K9 K9 K9

  26. K4,4,4

  27. From Id(9) = {0,1,2} and 0Id(K4,4,4), we have Id(8k+1)=Jd(8k+1), for 2k  0 or 2 (mod 6), 2k  6.

  28. 2k4 (mod 6)

  29. K17 K9 K9 K9

  30. K4,4,4

  31. From Id(9) = {0,1,2}, Id(17)={0,1,2,3,4} and 0Id(K4,4,4), we have Id(8k+1)=Jd(8k+1), for 2k  4 (mod 6), 2k  10.

  32. Id(8)?=?{0,1,2}=Jd(8)

  33. Suppose 2∈I(8). There is a kite-design of K₈ containing two kites of the form (1,2,3;4),(5,6,7;8). 1 5 2 6 3 7 4 8 The remaining 5 kites must come from the edges of K4,4 and {{1,4},{2,4},{5,8}, {6,8}}

  34. Therefore, Id(8)={0,1}{0,1,2}=Jd(8)

  35. n=16k 2k

  36. 2k0 or 2 (mod 6)

  37. K16 K16 K16 K16

  38. K8,8,8

  39. From Id(16) = {0,1,2,3,4}, and 0Id(K8,8,8), we have Id(16k)=Jd(16k), for 2k  0,2 (mod 6), 2k  6. • Similar, from Id(16) = {0,1,2,3,4}, Id(32)={0,1,2,3,4,5,6,7,8} and 0Id(K8,8,8), we have Id(16k)=Jd(16k), for 2k  4 (mod 6), 2k  10.

  40. n=16k+8

  41. 2k0 or 2 (mod 6)

  42. K24\K8 K24\K8 K24

  43. K8,8,8

  44. From Id(24) = {0,1,2,3,4,5,6}, Id(K24\K8)={0,1,2,3,4} and 0Id(K8,8,8), we have Id(16k+8)=Jd(16k+8), for 2k  0,2 (mod 6), 2k  6. • Similar, from Id(24) = {0,1,2,3,4,5,6}, Id(K24\K8)={0,1,2,3,4}Id(K40\K8)={0,1,2,3,4,5,6,7,8} and 0Id(K8,8,8), we have Id(16k+8)=Jd(16k+8), for 2k  4 (mod 6), 2k  10.

  45. Theorem Id(n)=Jd(n), for n≡0,1 (mod 8), n≠8 and Id(8)={0,1}.

More Related