1 / 39

Programming Languages (CS 550) Lecture 9 Summary I ntroduction to Formal Semantics

Programming Languages (CS 550) Lecture 9 Summary I ntroduction to Formal Semantics. Jeremy R. Johnson. TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: A A A A A A. Theme.

naif
Download Presentation

Programming Languages (CS 550) Lecture 9 Summary I ntroduction to Formal Semantics

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Programming Languages (CS 550)Lecture 9 SummaryIntroduction to Formal Semantics Jeremy R. Johnson TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AAAAAA

  2. Theme • This lecture introduces three techniques for formally specifying the semantics of programming languages: operational semantics (formal machine model), denotational semantics, and axiomatic semantics. • So far we have extensively used operational semantics (meta-circular interpreter and interpreters built using other languages), the approaches outlined are related but more mathematical.

  3. Outline • Operational Semantics • Reduction machine • Prolog implementation • Denotational Semantics • Translating programs to mathematical functions • Scheme implementation • Axiomatic Semantics • Specifications • Predicate transformers • Correctness proofs

  4. Mini Language Syntax 1. < program > → < stmt-list> 2. < stmt-list> → < stmt > ; < stmt-list > | < stmt > 3. < stmt > → < assign-stmt > | < if-stmt > | < while-stmt > 4. < assign-stmt > → < identifier > := < expr > 5. < if-stmt > → if < expr > then < stmt-list > else < stmt-list > fi 6. < while-stmt > → while < expr > do < stmt-list > od 7. < expr > → < expr > + < term > | < expr > - < term > | < term > 8. < term > → < term > * < factor > | < factor > 9. < factor > → ( < expr > ) | < number > | < identifier > 10. < number > → < number > < digit > | < digit > 11. < digit > → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 12. < identifier > → < identifier > < letter > | < letter > 13. < letter > → a | b | c | ... | z

  5. Environments • Let an Environment be a map from indentifiers to values = integers  undefined • Mini language programs can be thought of as a map from an initial Environment to a final Environment (assuming it terminates) • The initial environment maps all identifiers to an undefined • Each statement is defined in terms of what it does to the current environment (another mapping)

  6. Semantics of Mini Language Statements 1. Env: Identifier → Integer Union {undef} 2. (Env and {I = n})(J) = n if J=I, Env(J) otherwise 3. Env_0 = undef for all I 4. for if-stmt, if expr evaluates to value greater than 0, then evaluate stmt-list after then, else evaluate stmt-list after else 5. for while-stmt, as long as expr evaluates to a value greater than 0, stmt-list is repeatedly executed and expr evaluated.

  7. Example Mini Language Program 1. n := 0 - 5; 2. if n then i := n else i := 0 - n fi; 3. fact := 1; 4. while i do fact := fact * i; i := i - 1 od What is the final environment?

  8. Operational Semantics • Define language by describing its actions in terms of operations of an actual or hypothetical machine. • Need precise description of machine • Program  Control  Store • Reduction machine • Reduce program to a semantic “value” • Reduction rules (logical inference rules)

  9. Operational Semantics of Mini Language Expressions (1) ‘0’  0,…, ‘9’  9 (2) V’0’  10*V,…,V’9’  10*V+9 (3) V1 ‘+’ V2 V1 + V2 (4) V1 ‘+’ V2 V1 + V2 (5) V1‘*’ V2 V1* V2

  10. Mini Language Expressions (7) E  E1 _____________________________________________________________________ E ‘+’ E2 E1 ‘+’ E2 (8) E  E1 _____________________________________________________________________ E ‘-’ E2  E1‘-’ E2 (9) E  E1_____________________________________________________________________ E ‘*’ E2  E1‘*’ E2

  11. Mini Language Expressions (10) E  E1 _____________________________________________________________________ V ‘+’ E  V ‘+’ E1 (11) E  E1 ____________________________________________________________________ V ‘-’ E  V ‘-’ E1 (12) E  E1 ____________________________________________________________________ V ‘*’ E  V ‘*’ E1 (14) E  E1, E1  E2 [transitive closure] _____________________________________________________________________ E  E2

  12. Implementation in Prolog % reduce_all(times(plus(2,3),minus(5,1)),V). % V = 20 ? reduce(plus(E,E2),plus(E1,E2)) :- reduce(E,E1). reduce(minus(E,E2),minus(E1,E2)) :- reduce(E,E1). reduce(times(E,E2),times(E1,E2)) :- reduce(E,E1). reduce(plus(V,E),plus(V,E1)) :- reduce(E,E1). reduce(minus(V,E),minus(V,E1)) :- reduce(E,E1). reduce(times(V,E),times(V,E1)) :- reduce(E,E1). reduce(plus(V1,V2),R) :- integer(V1), integer(V2), !, R is V1+V2. reduce(minus(V1,V2),R) :- integer(V1), integer(V2), !, R is V1-V2. reduce(times(V1,V2),R) :- integer(V1), integer(V2), !, R is V1*V2. reduce_all(V,V) :- integer(V), !. reduce_all(E,E2) :- reduce(E,E1), reduce_all(E1,E2).

  13. Environments and Assignment (7) <E | Env>  <E1| Env> ______________________________________________________________________________________________________________________________ <E ‘+’ E2 | Env>  <E1 ‘+’ E2 | Env> • Env(I) = V ____________________________________________________________________________ <I | Env>  <V | Env>

  14. Environments and Assignment (16) <I ‘:=’ V | Env>  Env & {I = V} (17) <E | Env>  <E1| Env> ______________________________________________________________________________________________________________________ <I ‘:=’ E | Env>  <I ‘:=’ E1| Env> • <S | Env>  Env1 ______________________________________________________________________________________________ <S ‘;’ L | Env>  <L | Env1> (19) L  < L | Env0>

  15. Implementation in Prolog • Configurations • <E | Env> Config(E,Env) • Environments • [value(I1,v1),...,value(In,vn)] • Predicate to lookup values • Lookup(Env,I,V)

  16. Implementation in Prolog • Configurations • <E | Env> Config(E,Env) • Environments • [value(I1,v1),...,value(In,vn)] • Predicate to lookup values • Lookup(Env,I,V) lookup([value(I,V)|_],I,V). lookup([_|Es],I,V) :- lookup(Es,I,V), !.

  17. Implementation in Prolog % reduce_value(config(times(plus(x,3),minus(5,y)),[value(x,2),value(y,1)]),V). % V = config(20,[value(x,2),value(y,1)]) ? reduce(config(plus(E,E2),Env),config(plus(E1,E2),Env)) :- reduce(config(E,Env),config(E1,Env)). reduce(config(I,Env),config(V,Env)) :- atom(I), lookup(Env,I,V). reduce_all(config(V,Env),config(V,Env)) :- integer(V), !. reduce_all(config(E,Env),config(E2,Env)) :- reduce(config(E,Env),config(E1,Env)), reduce_all(config(E1,Env),config(E2,Env)). reduce_value(config(E,Env),V) :- reduce_all(config(E,Env),config(V,Env)).

  18. If Statements (20) <E | Env>  <E1| Env> __________________________________________________________________________________________________________________________________ <‘if’ E ‘then’ L1 ‘else’ L2 ‘fi’ | Env>  <‘if’ E1‘then’ L1 ‘else’ L2 ‘fi’ | Env> (21) V > 0 ______________________________________________________________________________________________________________________________ <‘if’ V ‘then’ L1 ‘else’ L2 ‘fi’ | Env>  < L1|Env> (22) V  0 _____________________________________________________________________ <‘if’ V ‘then’ L1 ‘else’ L2 ‘fi’ | Env>  < L2|Env>

  19. While Statements (23) <E | Env>  <V| Env>, V  0 ________________________________________________________________________________________________________________ <‘while’ E ‘do’ L ‘od’|Env>  Env • <E | Env>  <V| Env>, V > 0 _____________________________________________________________________________________________________________ <‘while’ E ‘do’ L ‘od’|Env>  <L;‘while’ E ‘do’ L ‘od’|Env> 

  20. Implementation in Prolog % Test cases: % reduce_exp_all(config(plus(times(2,5),minus(2,5)),[]),V). % V = config(7,[]) % reduce_exp_all(config(plus(times(x,5),minus(2,y)),[value(x,2),value(y,5)]),V). % V = config(7,[value(x,2),value(y,5)]) % reduce_all(config(seq(assign(x,3),assign(y,4)),[]),Env). % Env = [value(x,3),value(y,4)] % reduce(config(if(3,assign(x,3),assign(x,4)),[]),Env). % Env = [value(x,3)] % reduce(config(if(0,assign(x,3),assign(x,4)),[]),Env). % Env = [value(x,4)] % reduce_all(config(if(n,assign(i,0),assign(i,1)),[value(n,3)]),Env). % Env = [value(n,3),value(i,0)]

  21. Implementation in Prolog % reduce_all(config(while(x,assign(x,minus(x,1))),[value(x,3)]),Env). % Env = [value(x,0)] % reduce_all(config( % seq(assign(n,minus(0,3)), % seq(if(n,assign(i,n),assign(i,minus(0,n))), % seq(assign(fact,1), % while(i,seq(assign(fact,times(fact,i)),assign(i,minus(i,1))))))) % ,[]),Env). % Env = [value(n,-3),value(i,0),value(fact,6)]

  22. Denotational Semantics • Use functions to describe semantics of a programming language. • Associate semantic value to syntactically correct construct • Map syntactic domain to semantic domain • Val: Expression  Integer • Val(2 + 3*4) = 14 • 14 “denotes” the value of the expression 2+3*4 • P: Program  (Input  Output) • Program  Input  Output [right associate]

  23. Denotational Semantics of Mini Language (Expressions) • E: Expression  Environment  Integer • E[[E1 ‘+’ E2]](Env) = E[[E1]](Env) + E[[E2]](Env) • E[[E1‘-’ E2]](Env) = E[[E1]](Env) - E[[E2]](Env) • E[[E1‘*’ E2]](Env) = E[[E1]](Env) * E[[E2]](Env) • E[[I]](Env) = Env(I) • E[[N]](Env) = N

  24. Implementation in Scheme (define (exprE expr) (cond ((number? expr) (numE expr)) ((ident? expr) (identE expr)) ((plus? expr) (plusE expr)) ((minus? expr) (minusE expr)) ((times? expr) (timesE expr)) (else (error "illegal expression")))) (define (env exp) (if (eq? exp 'x) 3 'undef)) ((exprE '(+ 2 x)) env) ;Value: 5 (define (numE expr) (lambda (env) expr)) (define (identE expr) (lambda (env) (env expr))) (define (plusE expr) (lambda (env) (let ((expr1 (cadr expr)) (expr2 (caddr expr))) (+ ((exprE expr1) env) ((exprE expr2) env)))))

  25. Denotational Semantics of Mini Language (Expressions) • P: Program  Environment • P[[L]] = L[[L]](Env0) • L: Statement-list  Environment  Environment • L[[L1 ‘;’ L2]] = L[[L1]]  L[[L2]] • L[[S]] = S[[S]]

  26. Implementation in Scheme (define (progP prog) (if (stmt-list? prog) (stmt-listL prog) (error "illegal program"))) (define (stmt-listL stmt-list) (let ((first-stmt (car stmt-list)) (remaining-stmts (cdr stmt-list))) (if (null? remaining-stmts) (stmtS first-stmt) (compose (stmt-listL remaining-stmts) (stmtS first-stmt))))) (define (compose f g) (lambda (x) (f (g x))))

  27. Denotational Semantics of Mini Language (Statements) • S: Statement  Environment  Environment • S[[I ‘:=’ E]](Env) = Env & {I = E[[E]](Env)} • S[[‘if’ E ‘then’ L1 ‘else’ L2]](Env) = if E[[E]](Env) > 0 then L[[L1]](Env) else L[[L2]](Env) • S[[‘while’ E ‘do’ L od’]](Env) = if E[[E]](Env)  0 then Env else S[[‘while’ E ‘do’ L od’]](L[[L]](Env))

  28. Implementation in Scheme (define (stmtS stmt) (cond ((assign-stmt? stmt) (assignS stmt)) ((if-stmt? stmt) (ifS stmt)) ((while-stmt? stmt) (whileS stmt)) (else (error "illegal statement")))) (define (assignS stmt) (let ((ident (cadr stmt)) (expr (caddr stmt))) (lambda (env) (lambda (var) (if (eq? var ident) ((exprE expr) env) (env var))))))

  29. Implementation in Scheme (define (ifS stmt) (let ((expr (cadr stmt)) (S1 (caddr stmt)) (S2 (cadddr stmt))) (lambda (env) (if (> ((exprE expr) env) 0) ((stmt-listL S1) env) ((stmt-listL S2) env))))) (define (whileS stmt) (let ((expr (cadr stmt)) (S (caddr stmt))) (lambda (env) (if (<= ((exprE expr) env) 0) env ((whileS stmt) ((stmt-listL S) env))))))

  30. Implementation in Scheme (define prog '((assign n (- 0 5)) (if n ((assign i n)) ((assign i (- 0 n)))) (assign fact 1) (while i ((assign fact (* fact i)) (assign i (- i 1)))))) • (define env0 • (lambda (ident) 'undef)) • (env0 'x) • ;Value: undef • (define envf ((progPprog) env0)) • ;Value: envf • (envf 'n) • ;Value: -5 • (envf 'i) • ;Value: 0 • (envf 'fact) • ;Value: 120

  31. Axiomatic Semantics • Describe semantics of language constructs by their effect on assertions about the data manipulated by the program. • Pre and post conditions • {x = A} x := x + 1 {x = A+1} • {y  0} x := 1/y {x = 1/y} • Program specifications • { n ≥ 0, 1  i  n, a[i] = A[i]} sort-program {sorted(a) and permutation(a,A)} • Correctness Proofs

  32. Weakest Precondition • Given Q, Lots of preconditions P such that{P}C{Q} • {x = 3}x := x + 1{x > 0} • {x ≥ 3}x := x + 1{x > 0} • … • {x > -1}x := x + 1{x > 0} • Weakest (or most general) precondition • wp(C,Q) • {P}C{Q} iff P  wp(C,Q)

  33. Properties of wp • Law of the Excluded miracle • wp(C,false) = false • Distributivity of Conjunction • wp(C,P and Q) = wp(C,P) and wp(C,Q) • Law of Monotonicity • If Q  R then wp(C,Q)  wp(C,R) • Distributivity of Disjunction • wp(C,P) or wp(C,Q)  wp(C,P or Q) • Equal if C is deterministic

  34. Axiomatic Semantics of Mini Language • Semantics of C is the function • wp(C,_) from assertions to assertions • Predicate transformer • Statement-list • wp(L1;L2,Q) = wp(L1,wp(L2,Q)) • Assignment Statements • wp(I := E,Q) = Q[E/I] • wp(x:=x+1,x>0) = (x+1 > 0) = (x > -1) • wp(x:=x+1,x=A) = (x+1 = A_ = (x = A-1)

  35. Axiomatic Semantics of Mini Language • If Statements • wp(if E the L1 else L2fi,Q) = (E > 0  wp(L1,Q)) and (E  0  wp(L2,Q)) • wp(if x then x := 1 else x := -1,x=1) • (x > 0  1=1) and (x  0  -1=1) •  true and (x > 0)  x > 0

  36. Axiomatic Semantics of Mini Language • While Statements • Hi(while E do L od,Q), while executes i iterations and terminates satisfying Q • H0(while E do L od,Q) = (E  0 Q) • Hi+1(while E do L od,Q) = (E > 0 wp(L,Hi(while E do L od,Q) • wp(while E do L od,Q) = i, Hi(while E do L od,Q)

  37. Correctness Proofs • Loop Invariants • while E do L od • Find W such that W  wp(while…,Q) • W and (E > 0)  wp(L,W) • W and (E  0)  Q • P  W • If while loop terminates , W  wp(while…,Q) • Proves {P}while E do L od{Q}

  38. Correctness Proofs • Loop invariant (fact = (i+1)n, i≥0) • {n > 0} • i := n; • fact := 1; • while i do • fact := fact*i; • i := i-1; • od

  39. Correctness Proofs • W = (fact = (i+1)n, i≥0) • wp(fact := fact*i,i:=i-1,W) • = wp(fact := fact*i,wp(i:=i-1,W)) • =wp(fact := fact*i,fact=((i-1)+1)n,i-1≥0) • = wp(fact := fact*i,fact=in, i-1≥0) • = (fact*i=in, i-1≥0) = (fact = (i+1)n, i-1≥0) • W and i > 0  wp(L,W) • W and i  0 fact = n! • n > 0  wp(i:=n,fact:= 1,W) = (n ≥ 0)

More Related