220 likes | 405 Views
Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «ОРЕНБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» УДК 577.23; 579.083.13; 577.3.043; 537 № госрегистрации 01201002541 Инв. №
E N D
Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «ОРЕНБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» УДК 577.23; 579.083.13; 577.3.043; 537№ госрегистрации 01201002541Инв. № ОТЧЁТ О НАУЧНО-ИССЛЕДОВАТЕЛЬСКОЙ РАБОТЕ по теме: ВЛИЯНИЕ МАГНИТНЫХ И НЕМАГНИТНЫХ ИЗОТОПОВ МАГНИЯ НА ФИЗИКО-ХИМИЧЕСКИЕ ПРОЦЕССЫ В КЛЕТКАХ IN VIVO (Итоговый) шифр «2010-1.1-142-043-00» ГОСУДАРСТВЕННЫЙ КОНТРАКТ № 02.740.11.0703 от «05» апреля 2010 г. в рамках федеральной целевой программы «Научные и научно-педагогические кадры инновационной России» на 2009-2013 гг., в рамках реализации мероприятия № 1.1 Проведение научных исследований коллективами научно-образовательных центров в области физико-химической молекулярной и клеточной биологии. Научный руководительд. ф.-м.н. В.Л. Бердинский Оренбург 2013 г.
Экспериментальные и теоретические исследования I этапа • Теоретический расчёт эффектов внешнего постоянного магнитного поля и ядерного спина магнитного изотопа 25Мg на скорости ферментативных процессов в клетках живых организмов, в том числе на скорость синтеза молекулы АТФ • Создание методики исследования влияния изотопов магния 24Мg, 25Мg и 26Мg на рост, развитие и старение прокариотических бактериальных клеток Е.соli in vivo. • Разработка методов приготовления питательных сред, обогащенных изотопами 24Мg, 25Мg и 26Мg, позволяющих стимулировать и регистрировать магнитно-изотопные эффекты в молекулярной и клеточной биологии • Проведение патентных исследований • Разработка методики и оптимизация условий культивирования клеток на полученных питательных средах
Теоретический расчёт эффектов внешнего постоянного магнитного поля и ядерного спина магнитного изотопа 25Мg на скорости ферментативных процессов в клетках живых организмов, в том числе на скорость синтеза молекулы АТФ Кинетическаясхема образования АТФ фосфорилирующими ферментами • Здесь A и В – исходные диамагнитные частицы, которые в результате переноса электрона превращаются в синглетную ион-радикальную пару [A• +, B• -]S с константой скорости k1. Для синглетной ион-радикальной пары [A• +, B• -]S возможны три канала эволюции: • обратный перенос электрона на акцептор с константой скорости k-1; • дальнейший перенос электрона или трансформация субстратов, приводящие к образованию продуктов с константой скорости k; • спиновая эволюция, переводящая синглетную ИРП в триплетное состояние [A•+, B•-]T с частотой ωST, определяемую магнитными взаимодействиями неспаренных электронных спинов. Строго говоря, синглет-триплетную конверсию нельзя описывать константой скорости, так как это обратимый периодический процесс.
Результаты и выводы по теоретическим расчётам • Внешнее постоянное магнитное поле за счет действия Δg-механизма спиновой конверсии способно ускорять ферментативные ион-радикальные процессы и увеличивать выход продуктов в результате изменения соотношения синглетных и триплетных ИРП и состояний с разделенными зарядами. • Эффективность действия магнитного поля определяется магнитными параметрами ион-радикальной пары, образующейся в ходе ферментативного процесса, и кинетическими параметрами фермента – константами скоростей элементарных актов ферментативных реакций. • Магнитнополевые зависимости скорости образования продуктов позволяют определить кинетические параметры ферментативных реакций. • Скорость образования продуктов определяется количеством ион-радикальных пар в синглетном состоянии и отношением констант скорости k исчезновения ИРП с образованием продуктов и реакции обратного переноса электрона k-1. Отношение этих констант играет роль «биохимического усилителя», который увеличивает влияние ион-радикального механизма, делая его эффективным даже при достаточно малых концентрациях ИРП. • Медленные ферментативные ион-радикальные процессы с электронным транспортом должна быть более чувствительны к влиянию внешнего магнитного поля по сравнению с быстрыми ферментативными процессами.
В итоге были подобраны следующие условия культивирования бактериальных клеток Escherichia coli на изотопно-обогащенных питательных средах, позволяющие обнаружить эффект влияния изотопов на физико-химические процессы в клетках: • - температура 37º С; • - скорость вращения платформы шейкера для обеспечения аэрации 160 об/мин; • концентрация сульфата магния в среде 2.2 мМ/л. • Созданная методика была экспериментально проверена. Подробное описание приведено ниже. Проводилось четыре серии эксперимента с двумя параллелями в каждой серии для соответствующих немагнитных и магнитного изотопов магния. В процессе культивирования бактериальных клеток, поддерживалась постоянная, оптимальная для бактерий, температура 37º С и непрерывная аэрация путём помещения питательных сред с культурой в термостат ТСО-1/80 СПУ на шейкер ST-3 ELMI. Шейкер ST-3 – прибор, предназначенный для создания вращательного движения жидкости и точного поддержания заданной температуры в иммунологических планшетах. Скорость вращения платформы выбиралась 160 об./мин.
Экспериментальные ростовые кривые клеточной культуры, полученные при регистрации оптической плотности на длине волны 620 нм. Аналогичные экспериментальные ростовые кривые были получены при регистрации на длинах волн 450 нм и на 492 нм. Каждая точка представляет собой среднее значение. При статистической обработке экспериментальных кривых оказалось, что продолжительность лаг-фазы значительно короче, примерно на 40 %, в том случае, когда клетки пересеиваются в среду, которая содержит магнитный изотоп 25Mg, по сравнению с теми случаями, когда клетки пересевались в среду, содержащую немагнитный изотоп 24Mg или немагнитный изотоп 26Mg 1 – 24MgSO4, 2 – 25MgSO4, 3 – 26MgSO4, 4 – 24,25,26MgSO4 (смесь 24Mg, 25Mg и 26Mg изотопов в их природном соотношении)
Экспериментальные и теоретические исследования 2 этапа • проведение исследования по влиянию магнитного и немагнитных изотопов магния на рост, развитие и воспроизводимость бактерий E.coli; • проведение исследования по влиянию магнитного и немагнитных изотопов магния на морфологию поверхностных структур бактерий E.coli с помощью метода атомно-силовой микроскопии.
Внутриклеточное обогащение E.coli после культивирования в изотоп-содержащих средах, % Содержание изотопов магния в питательной среде М9, % Относительное содержание элементов питательных сред М9 C(mMg) – концентрация элементов в средах М9, где m – обозначает атомную массу изотопа (24,25 или 26), добавляемого в соответствующую питательную среду. C(24Mg) – концентрация элементов в питательной среде М9, содержащей изотоп магния 24Mg
Ростовые кривые клеток E. сoli, выращенных на питательных средах М9 с изотопами магния 24Mg, 25Mg и 26Mg – питательная среда М9 с соответствующим изотопом магния; *Mg – с природным магнием; **Mg – с магнием, полученным искусственно из смеси изотопов в их природном соотношении. Регистрация оптической плотности производилась на длине волны 492 нм. Все результаты были воспроизведены в 10 экспериментальных сериях, 4 из которых были «double blind» Относительные значения констант скорости роста для клеток как функция изотопии магния Относительные значения продолжительности адаптационной фазы роста как функция изотопии магния µi – константа скорости роста для клеток, выращенных на среде с i-м изотопом ; µ*Mg – константа скорости роста для клеток, выращенных на среде с природным магнием *Mg. : 1 – экспоненциальная; 2 – линейнаяаппроксимация ti – продолжительность адаптационной фазы для клеток, выращенных на среде с i-м изотопом; t*Mg – продолжительность адаптационной фазы для клеток, выращенных на среде с природным магнием *Mg
КОЕ клеток E.coli на стационарной фазе роста, выращенных на питательных средах М9 с изотопами магния 24Mg, 25Mg, 26Mg и природным магнием *Mg, **Mg Содержания АТФ в клетках E.coli, выращенных на средах с различными изотопами магния (24Mg, 25Mg, 26Mg, *Mg). 8 часов культивирования КОЕ клеток E.coli на начальной фазе отмирания, выращенных на питательных средах М9 с изотопами магния 24Mg, 25Mg, 26Mg Относительные значения констант скоростей отмирания клеток E.coli, как функция изотопии магния ki – константа скорости отмирания для клеток, выращенных на среде с i-м изотопом (24Mg, 25Mg или 26Mg); k24Mg – константа скорости отмирания для клеток, выращенных на среде с изотопом магния 24Mg
3 этап • В задачи 2 года исследований входило исследование влияние изотопов магния (магнитного и немагнитных) на пострадиационное восстановление эукариотических дрожжевых клеток Saccharomyces cerevisiae. Подбирались условия культивирования на изотопных средах, питательная среда и условия обнаружения магнитно-изотопных эффектов. • В качестве объекта исследования были выбраны дрожжи Saccharomyces cerevisiae LK 14. Поддержание музейной культуры проводили путем периодического пересева на скошенную твердую питательную среду – сусло-агар на основе пивного неохмеленного сусла (неохмеленное сусло (6–7°Б) - 1 л, агар - 2-2,5 %). Хранение музейной культуры проводили в холодильнике при температуре +4°С. Перед началом эксперимента микробную культуру пересевали с «музейного» косяка на чашки Петри с твердой средой того же состава. Рост культуры на чашках происходил в термостате при + 32° С в течение 24 часов. • Культивирование бактерий на изотопных средах, приготовление которых описано в предыдущем пункте, осуществляли при температуре + 32° С в течение 25 часов. Концентрацию клеток при культивировании в жидкой питательной среде определяли фотометрическим методом на двух длинах волн 540 и 620 нм на спектрофлуориметре «SOLAR CM2203». • Для выявления магнитно-изотопного эффекта магния на пострадиационное восстановление клеток и последующие физико-химические процессы дрожжевые клетки, культивированные в течение 24 часов , подвергались облучению ультрафиолетовым светом. Культивирование клеток перед облучением на магний-изотопных средах необходимо для накопления микроорганизмами именно магния соответствующей изотопной формы.
Ростовые кривые для дрожжевых клеток Saccharomyces cerevisiae, культивируемых на магний-изотопных средах. control – природныймагний, is24 – 24Mg, is25 - 25Mg, is26- 26Mg Кривые выживаемости как функция продолжительности восстановления для клеток Saccharomyces cerevisiae, облученных УФ-светом и выращенных на магний-изотопных средах. *Mg – среда с природным магнием
Результаты исследований 3 этапа • Выживаемость микроорганизмов, предварительно культивируемых на среде с магнитным изотопом магния 25Mg, оказалась на 12 % выше, чем для немагнитных изотопов. Однако данные результаты в 2 случаях из 3 находятся в пределах экспериментальной ошибки. • влияние магнитного изотопа магния на процессы пострадиационного восстановления, а, именно, процессов репарации, оказывается незначительным и компенсируется влиянием других факторов, общих для всех дрожжевых клеток; • положительное влияние магнитного изотопа магния на синтез аденозитрифосфорной кислоты, необходимой для работы репаразных структур, предположительно, объясняет количественное преимущество выживыших дрожжевых клеток, выращенных на среде с магнием-25; • для выяснения деталей полученных эффектов и механизмов действия изотопов магния на пострадиационное восстановление дрожжей требуются дополнительные эксперименты.
4 этап • При выполнении НИР 4 этапа исследовалась одна из основных морфологических характеристик дрожжевых клеток Saccharomyces cerevisiae с помощью электронной микроскопии, - это количество почкующихся клеток после суток культивирования на магний-изотопных средах. Статистически достоверных различий не было обнаружено. Однако дрожжи, выращенные на средах с магнитным изотопом магния, из эксперимента в эксперимент показывали большее количество почкующихся клеток. • Вторая морфологическая характеристика дрожжей, исследуемая с помощью методов электронной микроскопии, - это морфометрические параметры. При статистической обработке экспериментальных данных в Statistika 6.0, полученных при исследовании более 12 образцов дрожжевых клеток для каждого изотопа магния, не было выявлено различий в общих размерах клеток. Их средняя длина составила 13,12±0,35 мкм. • Линейные размеры клеток достоверно не различались для дрожжей, культивируемых на разных изотопах магния. Однако размеры митохондрий дрожжевых клеток, выращенных на среде с присутствием магнитного изотопа магния 25Mg, были достоверно на 5 % больше, чем для клеток, выращенных на немагнитных изотопах магния. Кроме того, по своей внутриклеточной структуре Saccharomyces cerevisiae, обогащенные магнием-25, соответствовали зрелой дрожжевой кульуре: имели четко очерченные оболочки, неоднородную и зернистую цитоплазму, а также большое количество вакуолей средних размеров, - по сравнению с другими клетками. Это означает, что АТФ-синтезируещие системы наиболее активны для клеток, растущих на магнии-25, который является более эффективным кофактором для многих ферментов.
5 этап • В ходе выполнения работ по 5 этапу была разработана методика исследования влияния внешних постоянных магнитных полей на рост и развитие бактериальных клеток E.coli, культивируемых в магний-изотопных средах. • Подобранные условия культивирования соответствуют оптимальным для E.coli: температура культивирования 37°С; pH среды 6.8±0.25; концентрация сульфата магния 2.2 ммоль/л. • После внесения инокулята объёмом 50мкл в жидкую синтетическую питательную среду М9 объёмом 6 мл, содержащую различные изотопные формы магния, В каждое магнитное поле 100, 75, 50, 30, 20, 8, 4, 0,4 мТл помещалось по два образца с культурой клеток для магнитного 25Mg и немагнитного 24Mg изотопа, контролем служили образцы клеток, культивируемые на среде М9, в отсутствие магнитного поля. Поле 0,4 мТл соответствуют магнитному полю, в котором растут бактерии в условиях культивирования в обычном стационарном термостате на шейкере. Клетки в этом поле были контролем.
Ростовые кривые клеток E. coli, выращенных на среде с содержанием изотопа магния: 24MgSO4 в слабом магнитном поле Константы скорости роста в log-фазе для клеток E.coli как функции магнитного поля для магнитного и немагнитного изотопа магния КОЕ клеток E. coli как функция магнитного поля
В магнитном поле 75 мТл наблюдался пик экспериментально полученного значения КОЕ. Это говорит о том, что суммарное действие внешнего и внутреннего магнитного поля на жизнеспособность клеток максимально. • Выращивание бактериальных клеток E.colic использованием разработанной методики показало, что внешнее магнитное поле усиливает эффект магнитного изотопа магния на колониеобразующую способность клеток. Количество КОЕ (колониеобразующих единиц) для клеток, выращенных на среде с магнитным изотопом магния 25Mg, было выше в несколько раз по сравнению с бактериями, растущими на средах с немагнитным изотопом магния 24Mg. • Достоверных различий во влиянии магнитного и немагнитных изотопов магния на рост дрожжевых клеток не обнаружено. Значение оптической плотности 0,9 на графиках соответствует 108 клеткам в 1 мл суспензии. Однако при увеличении величины внешнего постоянного магнитного поля скорость роста дрожжевой культуры незначительно, но увеличивалась. При этом не наблюдалось различий в константах скорости роста для микроорганизмов, культивируемых на магнитном 25Mg и немагнитном изотопе 24Mg магния. Очевидно, что эффективность действия внешнего постоянного магнитного поля на внутриклеточные процессы с участием ионов магния значительно меньше, чем на процессы с участием других элементов, имеющих ядерный спин и магнитный момент, соответственно.
Относительное содержание химических элементов в клетках E.coli, после цикла культивирования на средах М9 с изотопами магния. Сi – содержание элемента в клетках, выращенных на среде с i-м изотопом (24Mg, 25Mg, 26Mg); С*Mg – содержание элемента в исходной клеточной культуре, выращенной на питательной среде с природным Mg
Элементный состав клеток как функция магнитного поля Где C(isotope)/C(start)-относительное значение содержания элементов в клетках, выращенных на изотопах, к исходным клеткам
Элементный состав клеток как функция магнитного поля Где C(isotope)/C(start)-относительное значение содержания элементов в клетках, выращенных на изотопах, к исходным клеткам
Клетки потребляют или накапливают различное количество жизненно важных элементов в зависимости от типа изотопов и от значения внешнего магнитного поля, влияющее на них. Как видно из полученных данных, в полях диапазоном от 0 до 100 мТл, потребность клеток в основных элементах, таких как Ca, Fe, Mn и др., снижается. Область от 0 до 10 мТл требует дальнейших исследований. • Результаты экспериментальных исследований подтверждают теоретические расчёты и коррелируют с экспериментальными данными in vitro. Внешнее магнитное поле увеличивает действие магнитного изотопа магния 25Mg на колониеобразующую способность бактерий E.coli по сравнению с немагнитным изотопом магния 24Mg. Это свидетельствует о способности магнитного момента ядерного спина влиять на внутриклеточные процессы, а, именно, на ферментативные процессы, идущие с переносом одного или нескольких электронов. • Справедливо предположение, что внешнее магнитное поле стимулирует влияние на ферментативные процессы и других природных магнитных стабильных изотопов, которые содержатся в клетках всегда, например, изотоп фосфора 31Р. Таким образом, в полях 0-10 мТ внешнее магнитное поле влияет не только на магний-зависимые клеточные подсистемы, но и на другие системы с присутствием ядерного спина. Этим объясняется наличие максимум и минимумов для содержания основных жизненно важных элементов. • Экспериментальные данные для дрожжевых клеток отличались в разных экспериментальных сериях. Характер влияния внешнего постоянного магнитного поля и магнитного момента ядерного спина изотопа магния 25Mg носил случайный характер. Поэтому эти данные не приведены.
Результаты исследований • При выполнении НИР по проекту впервые в мире получены надежные экспериментальные доказательства влияния магнитных изотопов на функционирование живых организмов. Обнаружение, исследование биологических эффектов магнитных и немагнитных изотопов магния (24Mg, 25Mg и 26Mg) и внешнего магнитного поля и их надёжное доказательство позволит создавать новые способы управления биологическими процессами в живых организмах, в т.ч. скоростью образования АТФ.Прикладное значение данной работы заключается в возможности создания принципиально новых методов лечения и профилактики болезней, а также нового класса магнитно-изотопных лекарств и биологически-активных добавок, способных стимулировать или подавлять жизненно важные внутриклеточные процессы. • Было показано, что спинзависимые ион-радикальные ферментативные реакции в различных участках тел могут быть “первичным магниторецептором“ в живых организмах без создания специального органа. Продукты этих реакций “превращают” эффекты ядерного спина и магнитного поля в “биохимический отклик“ живых организмов. Рассмотрены два механизма синглет-триплетной конверсии ион-радикальных пар: g-механизм, обусловленный разностью g-факторов ион-радикалов, и СТВ-механизм, обусловленный сверхтонкими взаимодействиями неспаренных электронных спинов с ядерными спинами. Получены зависимости скоростей ферментативных реакций от величины констант сверхтонких взаимодействий, от напряженности магнитного поля и от констант скоростей элементарных актов ферментативных реакций. Исследовано влияние спинселективной рекомбинации на скорость реакции. • Результаты экспериментов показали, что константа скорости роста для бактерий Escherichia coli, растущих на средах с 25Mg, оказывается достоверно на 10-15 % выше по сравнению с клетками, потребляющих в качестве питательного субстрата немагнитные изотопы магния 24Mg и 26Mg. Качественно полученные экспериментальные зависимости совпадают с данными по влиянию магнитного изотопа магния на скорость ферментативного фосфорилирования, полученными в экспериментах in vitro. Это говорит об увеличении скорости деления клеток за счёт большей скорости синтеза АТФ в присутствии магнитного изотопа 25Mg по сравнению с немагнитными изотопами 24Mg и 26Mg. Полученный магнитно-изотопный эффект изотопа магния определяется, в том числе, и скоростью накопления бактериями достаточного количества макроэргических молекул АТФ, необходимого для активной жизни. • При подсчёте КОЕ на стационарной фазе роста бактерий были получены результаты, которые подтверждают полученную кинетику роста микроорганизмов – на среде с магнитным изотопом 25Mg колониеобразующая способность клеток E.coli выше 1,5-2 раза в различных экспериментальных сериях по сравнению с немагнитными изотопами 24,26Mg. • Исследование влияния внешнего магнитного поля на рост бактериальных клеток и дрожжевых клеток на средах с магнитным и немагнитным изотопом магния показало, что эффект магнитного изотопа магния 25Mg на колониеобразующую способность клеток увеличивается при включении внешнего магнитного поля по сравнению с немагнитным изотопом магния 24Mg. • Изучение изотопного и элементного состава дрожжевых и бактериальных клеток, выращенных на питательных средах в нулевом и постоянном магнитном поле 0-100 мТл, обогащенных различными изотопами магния, показало, что роль магнитных изотопов в клетках не сводится к ускорению отдельных ферментативных процессов. Магнитно-изотопное обогащение клеток и изменение биологических процессов включает процессы внутриклеточной регуляции, что приводит к удалению одних химических элементов и накоплению других. • Полученные экспериментальные данные и проведенные теоретические расчёты влияния магнитных поля в живых организмах открывает широкие горизонты для исследования действия стабильных магнитных изотопов жизненно важных элементов на внутриклеточные процессы. Подобные исследования станут фундаментом для новых научных направлений – спиновой биохимии и спиновой микробиологии.