700 likes | 1.02k Views
CONSTRAINED SPHERICAL CIRCLE PACKINGS. Tibor Tarnai & Patrick W. Fowler Budapest Sheffield. Contents. Introduction Spiral packing Axially symmetric packing Multisymmetric packing (TT & Zs. Gáspár, 1987) Pentagon packing (T.T. & Zs. Gáspár, 1995)
E N D
CONSTRAINED SPHERICAL CIRCLE PACKINGS Tibor Tarnai & Patrick W. Fowler Budapest Sheffield
Contents • Introduction • Spiral packing • Axially symmetric packing • Multisymmetric packing (TT & Zs. Gáspár, 1987) • Pentagon packing (T.T. & Zs. Gáspár, 1995) • Antipodal packing (T.T., 1998) • Packing of triplets (P.W.F. & T.T., 2005) • Packing of quartets (P.W.F. & T.T., 2003) • Packing of twins (P.W.F. & T.T., 2005) • Conclusions
Late neolithic stone carving Scotland, around 2500 BC Ashmolean Museum, Oxford
H. Bosch, Garden of delights Around 1600 AD Prado, Madrid
Pollen grain Psilotrichum gnaphalobrium, Africa Electron micrograph, courtesy of Dr G. Riollet
The Tammes problem(the unconstrained problem) How must n equal circles (spherical caps) be packed on a sphere without overlapping so that the angular diameter dn of the circles will be as large as possible?
The graph • Vertex: centre of a spherical circle • Edge: great circle arc segment joining the centres of two circles that are in contact
Solutions to the Tammes problem 6 3 4 5 7 d5 = d6 10 8 9 11 12 24 d11 = d12
Contents • Introduction • Spiral packing • Axially symmetric packing • Multisymmetric packing (TT & Zs. Gáspár, 1987) • Pentagon packing (T.T. & Zs. Gáspár, 1995) • Antipodal packing (T.T., 1998) • Packing of triplets (P.W.F. & T.T., 2005) • Packing of quartets (P.W.F. & T.T., 2003) • Packing of twins (P.W.F. & T.T., 2005) • Conclusions
Spiral circle packing (apple peeling) n = 100 Zs. Gáspár, 1990
Contents • Introduction • Spiral packing • Axially symmetric packing • Multisymmetric packing (TT & Zs. Gáspár, 1987) • Pentagon packing (T.T. & Zs. Gáspár, 1995) • Antipodal packing (T.T., 1998) • Packing of triplets (P.W.F. & T.T., 2005) • Packing of quartets (P.W.F. & T.T., 2003) • Packing of twins (P.W.F. & T.T., 2005) • Conclusions
Axially symmetric packing n = 426 n = 286 LAGEOS, courtesy of Dr A. Paolozzi Golf ball
Contents • Introduction • Spiral packing • Axially symmetric packing • Multisymmetric packing (TT & Zs. Gáspár, 1987) • Pentagon packing (T.T. & Zs. Gáspár, 1995) • Antipodal packing (T.T., 1998) • Packing of triplets (P.W.F. & T.T., 2005) • Packing of quartets (P.W.F. & T.T., 2003) • Packing of twins (P.W.F. & T.T., 2005) • Conclusions
Magic numbers (circles at the vertices) (no circles at the vertices) where (tetrahedron, octahedron, icosahedron) ,
Octahedral packing 30 48 78 144 198 432
Icosahedral packing 60 120 180 360 480 750
Packing of 72 circles tetrahedral octahedral icosahedral d = 24.76706°d = 24.85375°d = 24.83975°
Packing of 192 circles octahedral icosahedral d =15.04103°d =15.17867°
Packing of 492 circles both icosahedral
Icosahedral packings for large n R.H. Hardin & N.J.A. Sloan, 1995
Contents • Introduction • Spiral packing • Axially symmetric packing • Multisymmetric packing (TT & Zs. Gáspár, 1987) • Pentagon packing (T.T. & Zs. Gáspár, 1995) • Antipodal packing (T.T., 1998) • Packing of triplets (P.W.F. & T.T., 2005) • Packing of quartets (P.W.F. & T.T., 2003) • Packing of twins (P.W.F. & T.T., 2005) • Conclusions
Pentagon packing Random packing Dandelion, Salgótarján Sculptor: István Kiss
Local optima for n = 24 Octahedral symmetry
Local optima for n = 72approximation of icosahedral papilloma virus A map computed from electron cryo-micrographs, courtesy of Dr. R.A. Crowther
Contents • Introduction • Spiral packing • Axially symmetric packing • Multisymmetric packing (TT & Zs. Gáspár, 1987) • Pentagon packing (T.T. & Zs. Gáspár, 1995) • Antipodal packing (T.T., 1998) • Packing of triplets (P.W.F. & T.T., 2005) • Packing of quartets (P.W.F. & T.T., 2003) • Packing of twins (P.W.F. & T.T., 2005) • Conclusions
Graphs of antipodal packings d5x2 = d6x2 Further results by J.H. Conway, R.H. Hardin & N.J.A. Sloane,1996
Contents • Introduction • Spiral packing • Axially symmetric packing • Multisymmetric packing (TT & Zs. Gáspár, 1987) • Pentagon packing (T.T. & Zs. Gáspár, 1995) • Antipodal packing (T.T., 1998) • Packing of triplets (P.W.F. & T.T., 2005) • Packing of quartets (P.W.F. & T.T., 2003) • Packing of twins (P.W.F. & T.T., 2005) • Conclusions
Problem of packing of triplets of circles How must 3N non-overlapping equal circles forming N triplets be packed on a sphere so that the angular diameter of the circles will be as large as possible under the constraint that, within each triplet, the circle centres lie at the vertices of an equilateral triangle inscribed into a great circle of the sphere?
Method AS surface area of the sphere Aiarea of the circles Aijarea of double overlaps Aijkarea of triple overlaps
Graphs of conjectural solutions d2x3 = d3x3 d3x3 = d4x3
Graph of conjectural solution Rattling triangle
Compounds of triangles 2 3 4 5 6 7
The most symmetrical view 2 3 4 5 6 7
Solution for N = 2 Solution is not unique.
Contents • Introduction • Spiral packing • Axially symmetric packing • Multisymmetric packing (TT & Zs. Gáspár, 1987) • Pentagon packing (T.T. & Zs. Gáspár, 1995) • Antipodal packing (T.T., 1998) • Packing of triplets (P.W.F. & T.T., 2005) • Packing of quartets (P.W.F. & T.T., 2003) • Packing of twins (P.W.F. & T.T., 2005) • Conclusions
Problem of packing of quartets of circles How must 4N non-overlapping equal circles forming N quartets be packed on a sphere so that the angular diameter of the circles will be as large as possible under the constraint that, within each quartet, the circle centres lie at the vertices of a regular tetrahedron?
Valence model of diatomic molecules Linnett’s valence configu- rations constructed from quartets of spin-up and spin-down electrons
Graphs of conjectural solutions d4x4 = d5x4
Graphs of conjectural solutions d7x4 = d8x4
Compounds of tetrahedra N = 1 N = 2 N = 3 N = 4 d4x4 = d5x4
Compounds of tetrahedra N = 6 N = 5 d4x4 = d5x4 N = 8 N = 7 d7x4 = d8x4
Memorial to Thomas Bodley Merton College Chapel, Oxford, 1615