520 likes | 647 Views
Exploiting Temporal Coherence for Incremental All-Frequency Relighting. Our Method. Ng et al. 2003. 30 Wavelet lights per frame. Columbia University. CG Lighting Design. Movies. Video Games. Unreal Championship 2 2004 ( www.unrealchampionship2.com ).
E N D
Exploiting Temporal Coherence for Incremental All-Frequency Relighting Our Method Ng et al. 2003 30 Wavelet lights per frame Columbia University
CG Lighting Design Movies Video Games Unreal Championship 2 2004 (www.unrealchampionship2.com) The Lord of the Rings: The Two Towers 2002 (www.lordoftherings.net) Star Wars Episode I 1999 (thecia.com.au/reviews/s/star-wars-1.shtml) Doom 3 2004 (www.doom3.com)
CG Lighting Design: Why is it hard? Specularities / Reflections Hard Shadows • Complex Lighting • Complex Materials • Takes Hours to Render • Need Interactivity • PRT • Sloan et al. 2002 • Ng et al. 2003 Soft Shadows Caustics
PRT Relighting: Matrix-Vector Multiply Slides from Ng et al. SIGGRAPH 2003
PRT Relighting: Matrix-Vector Multiply • Input Lighting(Cubemap Vector) • Output Image(Pixel Vector) • TransportMatrix Slides from Ng et al. SIGGRAPH 2003
Light-Transport Matrix Columns Slides from Ng et al. SIGGRAPH 2003
Light-Transport Matrix Columns Slides from Ng et al. SIGGRAPH 2003
Matrix Multiplication is Enormous • Dimension • 512 x 512 pixel images ( ) • 6 x 64 x 64 cubemap ( ) • Full matrix-vector multiplication is intractable • On the order of 1010 operations per frame • PRT exploits coherence to enable real-time rendering Slides from Ng et al. SIGGRAPH 2003
PRT: Exploiting Coherence Temporal Coherence [Our Contribution] Image / Vertex Colors Lighting Vector Transport Matrix Signal / Spatial Coherence [Sloan et al. 2003] [Liu et al. 2004] Angular Coherence [Ng et al. 2003] 30 – 100 Wavelet Lights
Previous Work: PRT • Dorsey, J., Arvo, J., and Greenberg, D. 1995.Interactive Design of Complex Time-Dependent Lighting. In IEEE Computer Graphics and Applications, 15(2): 26-36. • Ng R., Ramamoorthi R., Hanrahan P.All-frequency shadows using non-linear wavelet lighting approximation.ACM TOG(SIGGRAPH 03) 22, 3 (2003), 376-381. • Sloan, P., Kautz, J., Snyder, J.Precomputed Radiance Transfer for Real-Time Rendering in Dynamic, Low-Frequency Environments. In Proceedings of SIGGRAPH 2002 • Ng R., Ramamoorthi R., Hanrahan P.Triple product wavelet integrals for all-frequency relighting.ACM TOG (SIGGRAPH 04) 23, 3 (2004), 475-485. • Sloan P., Hall J., Hart. J, Snyder J.Clustered principal components for precomputed radiance transfer.ACM TOG (SIGGRAPH 03) 22, 3 (2003), 382-391. • Sloan P., Luna B., Snyder J.Local, deformable precomputed radiance transfer. ACM TOG (SIGGRAPH 05) 24, 4 (2005), 1216-1224. • Wang R., Tran J., Luebke D.All-frequency relighting of non-diffuse objects using separable BRDF approximation.In EGSR (2004), pp.345-354. • Wang R., Tran J., Luebke D.All-frequency interactive relighting of translucent objects with single and multiple scattering.ACM TOG (SIGGRAPH 05) 24, 3 (2005), 1202-1207. • Zhou K., Hu Y., Lin S., Guo B., Shum H.Precomputed shadow fields for dynamic scenes.ACM TOG (SIGGRAPH 05) 25, 3 (2005). • Ben-Artzi A., Overbeck R., Ramamoorthi R.Real-time BRDF editing in complex lighting. ACM TOG (SIGGRAPH 06) (2006). This Session Wang R., Luebke D., Humphreys G., Ng R.Efficient wavelet rotation for environment map rendering. In EGSR (2006). Kontkanen J., Turquin E., Holzschuch N., Sillion F.Wavelet radiance transport for real-time indirect lighting. In EGSR (2006) Einarsson P., Chabert C., Jones A., Lamond B., Ma A., Hawkins T., Sylwan S., Debevec P.Relighting human locomotion with flowed reflectance fields.In EGSR (2006)
Previous Work: PRT • Dorsey, J., Sillion, F., and Greenberg, D. 1991.Design and simulation of opera lighting and projection effects. In Computer Graphics (Proceedings of SIGGRAPH 91), vol. 25, 41-50. • Ng R., Ramamoorthi R., Hanrahan P.All-frequency shadows using non-linear wavelet lighting approximation.ACM TOG(SIGGRAPH 03) 22, 3 (2003), 376-381. • Sloan, P., Kautz, J., Snyder, J.Precomputed Radiance Transfer for Real-Time Rendering in Dynamic, Low-Frequency Environments. In Proceedings of SIGGRAPH 2002 • Ng R., Ramamoorthi R., Hanrahan P.Triple product wavelet integrals for all-frequency relighting.ACM TOG (SIGGRAPH 04) 23, 3 (2004), 475-485. • Sloan P., Hall J., Hart. J, Snyder J.Clustered principal components for precomputed radiance transfer.ACM TOG (SIGGRAPH 03) 22, 3 (2003), 382-391. • Sloan P., Luna B., Snyder J.Local, deformable precomputed radiance transfer. ACM TOG (SIGGRAPH 05) 24, 4 (2005), 1216-1224. • Wang R., Tran J., Luebke D.All-frequency relighting of non-diffuse objects using separable BRDF approximation.In EGSR (2004), pp.345-354. • Wang R., Tran J., Luebke D.All-frequency interactive relighting of translucent objects with single and multiple scattering.ACM TOG (SIGGRAPH 05) 24, 3 (2005), 1202-1207. • Zhou K., Hu Y., Lin S., Guo B., Shum H.Precomputed shadow fields for dynamic scenes.ACM TOG (SIGGRAPH 05) 25, 3 (2005). • Ben-Artzi A., Overbeck R., Ramamoorthi R.Real-time BRDF editing in complex lighting. ACM TOG (SIGGRAPH 06) (2006). Temporal Coherence [Our Contribution] This Session Wang R., Luebke D., Humphreys G., Ng R.Efficient wavelet rotation for environment map rendering. In EGSR (2006). Kontkanen J., Turquin E., Holzschuch N., Sillion F.Wavelet radiance transport for real-time indirect lighting. In EGSR (2006) Einarsson P., Chabert C., Jones A., Lamond B., Ma A., Hawkins T., Sylwan S., Debevec P.Relighting human locomotion with flowed reflectance fields.In EGSR (2006)
Outline • Motivation / Previous Work • Basic Approach to Incremental Relighting • Analysis of Temporal Coherence in Lighting • Per-Band Incremental • Results
Basic Incremental Algorithm More Compressible
Basic Incremental: Problems Frame 0 Incremental Reference
Basic Incremental: Problems Frame 30 Incremental Reference
Basic Incremental: Problems Frame 75 Incremental Reference Ghost Shadows
Basic Incremental: Problems Frame 125 Incremental Reference
Basic Incremental: Problems Frame 400 Incremental Reference
Outline • Motivation / Previous Work • Basic Approach for Incremental Relighting • Analysis of Temporal Coherence in Lighting • Per-Band Incremental • Results
Frequency Analysis of Temporal Coherence Medium Frequency High Frequency Low Frequency
Frequency Analysis of Temporal Coherence Medium Frequency High Frequency Low Frequency
Frequency Analysis of Temporal Coherence Medium Frequency High Frequency Low Frequency
Frequency Analysis of Temporal Coherence Medium Frequency High Frequency Low Frequency
Frequency Analysis of Temporal Coherence Medium Frequency High Frequency Low Frequency
Frequency Analysis of Temporal Coherence Medium Frequency High Frequency Low Frequency Temporal Wavelet Transform
Frequency Analysis of Temporal Coherence Medium Frequency High Frequency Low Frequency Temporal Wavelet Transform
Frequency Analysis of Temporal Coherence 100 % ENERGY Temporal Frequency 0 % Angular Frequency
Outline • Motivation / Previous Work • Basic Approach for Incremental Relighting • Analysis of Temporal Coherence in Lighting • Per-Band Incremental • Results
Per-Band Incremental (PBI) + B = T L 1 1 B = T L + 2 2 B = T L 3 3 B B B 1 2 3 B = T L Incremental Incremental Non-Incremental B = + +
Oracle (Incremental or Not) • Exhaustive • Try all combinations over all wavelet bands. • Very Slow. • Simple • Compare L1 Error in each band individually.
Oracle (Incremental or Not) • Exhaustive • Try all combinations over all wavelet bands. • Very Slow. • Simple • Compare L1 Error in each band individually. L1 Distance L1 Distance Non-Incremental Incremental
Oracle (Incremental or Not) • Exhaustive • Try all combinations over all wavelet bands. • Very Slow. • Simple • Compare L1 Error in each band individually. • Almost zero overhead. • Comparable results to Exhaustive. <or> L1 Distance L1 Distance Non-Incremental Incremental
Outline • Motivation / Previous Work • Basic Approach for Incremental Relighting • Analysis of Temporal Coherence in Lighting • Per-Band Incremental • Results
Results 16 15 14 13 12 70 85 55 Per-Band Incremental 30 Wavelets Simple Exhaustive Percentage L1 Error Frame
Per-Band Incremental • 3x – 4x Speed / Quality Improvement • Progressively Convergent • Minimal Overhead
Minimal Overhead • ~ 100 Lines of Code (Pseudo-code in paper). • < 10 % Memory Overheads • Speed: • Average case (30 wavelets): 5 % Overhead
Applies to All (?) Wavelet PRT Frameworks • Old PRT • Standard All-Frequency PRT [Ng et al. 2003] • Current PRT • Clustered PCA [Liu et al. 2004] • Changing View with Separable BRDF Approximation [Wang et al. 2004] • Future PRT • Real-time BRDF Editing [Ben-Artzi et al. SIGGRAPH 2006]