330 likes | 565 Views
22 Na+p 共振散射的厚靶实验研究. 王 友 宝. 原子能院核天体物理组 2013 年 RIBLL 实验计划. Contents. Scientific Motivation CRIB experiment and result RIBLL experiment. Orgueuil meteorites and Ne-E problem.
E N D
22Na+p 共振散射的厚靶实验研究 王 友 宝 原子能院核天体物理组 2013年RIBLL实验计划
Contents • Scientific Motivation • CRIB experiment and result • RIBLL experiment
Orgueuil meteorites and Ne-E problem Fell on May 14, 1864, a few minutes after 8 pm, near Orgueuil in southern France. About 20 stones fell over an area of several square miles. In 1972,Black found that in Orgueuil meteorites the abundance ratio of 20Ne/22Ne is less than 1.5,much lower than that of 9.8 on earth, this is the so-called Ne-Extraordinary problem。Geoch. Cosmochim. Acta V36, 347(1972)
Presolar grains separated from meteorite SEM-Secondary electron image S. Amari, ApJ690:1424–1431, 2009
22Na production somewhere The relatively short half-life and the 1.275 MeV g-ray make the 22Na a possibly sensitive probe for the diagnosis of nearby Nova outbursts from the Sun.
International Gamma-Ray Astrophysics Laboratory European Space Agency http:// www.esa.int/science/integral
Milky Way seen by 26Al g-ray at satellite observatory INTEGRAL observatory total of about 2.8 solar masses of 26Al in our galaxy
22Na g-ray observation COMPTEL aboard CGRO observed five nearby Ne-type novae 22Na: only an upper limit of 3.710-8 M⊙ of ejected 22Na by any nova in the Galactic disk. What happened to the 22Na?
Classic Nova Thermonuclear outburst takes place on the surface of a white dwarf component in a close binary system Joséet al., APJ, 520:347-360(1999)
Main nuclear paths in the synthesis of 22Na Four reactions that control the synthesis of 22Na: 20Ne(p,g)21Na 21Ne(p,g)22Na 21Na(p,g)22Mg 22Na(p,g)23Mg Joséet al., APJ, 520:347-360(1999)
Narrow resonances rate entirely determined by “resonance strength” wgand energy of the resonance ER resonance strength (= integrated cross section over resonant region) (Gi values at resonant energies) • experimental info needed • partial widths Gi • spin J • energy ER
CRIB 22Na+p experiment February 28-March 10, 2012 22Na beam production conditions
22Na RIB production At F3, with 50 kV of Wien Filter Purity: ~2×46.8 %
Experimental setup at F3 chamber Gas target Length: 300 mm Windows: 2.5 mm Havar (front), 26.5 mm Mylar (back). Silicon Telescopes DSSSD+SSD 5050 mm2 22Na: 37.1 MeV (in gas) 2.5×105 pps (on target)
Setup for 22Na+p/a PPAC Gas target H2: 310 torr He: 400 torr Ar: 75 torr 22Na
a p d Light recoils from 22Na+p Proton spectrum from 22Na(p,p) and background
ST1 22Na+a Excitation Function ST2 ds/dW /mb/sr ST3 激发能区太窄,并且发现使用气体靶会导致较大几何不确定性! Ec.m. /MeV
22Na+p with a solid (CH2)n target 固体靶的优势 • 反应点的几何不确定性小,因此在低能段更准确。 • 能够覆盖更宽的23Mg激发能区,同时测量22Na(p,g)23Mg和19Ne(a,p)22Na感兴趣的23Mg能级。 • 比气体靶实验更简单易行。
Motivations of another 22Na+p measurement • To study the relevant resonances in 23Mg over larger excitation energy region using 22Na+p channel with a well-developed thick target method • To study the 23Mg energy level related to the 19Ne(a,p)22Na reaction
RIBLL1-低能次级束测试 参照东京大学CRIB装置,在RIBLL1上加装气体靶。 • 产生反应(逆运动学) 1H(22Ne, 22Na)n • 主束(22Ne7+) 能量:6.2 MeV/u;流强:~ 300 enA (RIBLL1入口) • 气体靶 氢气 [f30,80 毫米长,500 mbar大气压,酒精冷却~2C] • 次级束(22Na11+) • 纯度:30%,流强:1.7104 pps • 预期:1000 enA 22Ne, 1atm 氢气, 22Na流强可达 2105 pps
RIBLL的22Na次级束流 • 束流粒子鉴别图 狭缝条件:C1:15 mm (DE/E=1.5%), C2: 10 mm (DE/E=1.0%) } TOF1计数率:46万每秒 TOF2计数率:7.6万每秒 T1-T2传输效率:17% 【参见:J.J. He et al., NIMA680(2012)43-47】
实验设置 22Na: 93 MeV, Ec.m.≈ 4.0 MeV (CH2)n靶: 7.5 mg/cm2