420 likes | 542 Views
Grid computing applications in modeling and simulations of molecular nanomagnets and classical charged particles. Michał Antkowiak. P. Sobczak, G. Musiał, G. Kamieniarz, B. Błaszkiewicz. Faculty of Physics, A. Mickiewicz University, Pozna ń , Poland
E N D
Grid computing applications in modeling and simulations of molecular nanomagnets and classical charged particles MichałAntkowiak P. Sobczak, G. Musiał, G. Kamieniarz, B. Błaszkiewicz Faculty of Physics, A. Mickiewicz University, Poznań, Poland European Institute of Molecular Magnetism, Florence, Italy
Outline • Molecular nanomagnets • Classical charged particles • PEARL-AMU site
Molecular nanomagnets • Quantum molecular rings • Spin models and thermodynamic quantities • Exact Diagonalization Technique • Results for Cr – based rings
Cr8 (Cr8F8Piv16)
Cr9 [Pr2NH2][Cr9F9Cl2(Piv)17]
Cr7Cd [(CH3)2NH2][Cr7CdF8{OOCC(CH3)3}16]
θ The quantum molecular rings model Sj - spin operators (s=3/2) n – number of sites B – magnetic field
Thermodynamic quantities • Free energy • Specific heat C, susceptibility χ and entropy S as derivatives of the free energy • Specific heat C and susceptibility χzas functions of the spin moments
Exact diagonalization technique • Size of the Hamiltonian matrix • Cr8: 48 x 48 (65536 x 65536 = 32GB) • Cr9: 49 x 49 (262144 x 262144 = 512GB) • For θ=0 • quasi diagonal form of the Hamiltonian • matrix blocks labeled by • eigenvalues M of Sz • Symmetry (a) of the eigenstate • Cr8: 48 blocks (max. size: 4068 x 4068 = 0.12GB) • Cr9: 52 blocks (max. size: 15180 x 15180 = 1.7GB) • For θ≠0 -> only 2 blocks labeled by symmetry
Parallel programming tasks and models • MPI library • Master-slave model • Star-like • LPT algorithm
Speedup (Cr8) u = tseq/tpar
Efficiency (Cr8) E = u/p Limited scalability
Classical charged particles • Subject of the research • Models • Genetic algorithm • Results
The classical charged particles models • 2D system • Coulomb potential (1), 9≤N≤30 • Logarithmicpotential(2), 9≤N≤30 • 3D system • Coulomb potential(1), 17≤N≤70 • Logarithmicpotential(2), 10≤N≤50 Uniform particles:qi = qj= 1 (1) (2)
Genetic algorithm method • 2D system • One chromosome = one solution • One gene = one coordinate (x or y). x1 x2 … xN Chromosome y1 y2 … yN gene Ns (generations): 106 - 107 S (chromosomes): 200 – 500 Pc (crossing probability): 0.1 - 0.9 Pm (mutation probability): 0.02 – 0.2
2D system results • N=30
2D system results • N=30 Ground-state configuration Metastable state configuration Higher symmetry = lower energy
Conclusions • Despite more and more advanced algorithms large computing resources are still needed • More complicated systems = more computing resources (both quantum and classical) (ED – higher scalability) • Grid resources improve computational infrastructure and enable simulations of more complicated systems
Team G. Kamieniarz W. Florek G. Musiał L. Dębski P. Kozłowski K. Pacer D. Tomecka P. Sobczak P. Gąbka L. Kaliszan M. Haglauer T. Ślusarski B. Błaszkiewicz Ł. Kucharski M. Antkowiak
PEARL-AMU site • 19 CPUs (32 cores) • AMD x86_64 Opteron Dual Core: 2.0 and 2.4 GHz • Xeon Dual Core: 2.66GHz • ~ 4 cores per node • Rpeak = 153 GFlops • 41 GB RAM • 4 GB – 12 GB per node • 1.22 TB disc space • Wien2k, FPLO, NWChem, Molpro, Turbomole, numerical NAG library
Computing grants in HPC centers Reef 46 x dual-core Xeon EM64T 3GHz Galera 1344 x quad-core Xeon 2,33 GHz JUMP 448 x Power6 4.7 GHz
Acknowledgements • European Network of Excellence MAGMANet • Polish Ministry of Science and Higher Education