290 likes | 403 Views
Heavy Flavor in the sQGP. Ralf Rapp Cyclotron Institute + Physics Department Texas A&M University College Station, USA With: H. van Hees, D. Cabrera (Madrid), X. Zhao, V. Greco (Catania), M. Mannarelli (Barcelona) 24. Winter Workshop on Nuclear Dynamics
E N D
Heavy Flavor in the sQGP Ralf Rapp Cyclotron Institute + Physics Department Texas A&M University College Station, USA With: H. van Hees, D. Cabrera (Madrid), X. Zhao, V. Greco (Catania), M. Mannarelli (Barcelona) 24. Winter Workshop on Nuclear Dynamics South Padre Island (Texas), 09.04.08
transport in QGP, hadronization 1.) Introduction • Empirical evidence for sQGP at RHIC: • - thermalization / low viscosity (low pT) • - energy loss / large opacity (high pT) • - quark coalescence (intermed. pT) • Heavy Quarks as comprehensive probe: • - connect pT regimes via underlying HQ interaction? • - strong coupling: perturbation theory becomes unreliable, • resummations required • - simpler(?) problem: heavy quarkonia ↔ potential approach • - similar interactions operative for elastic heavy-quark scattering?
Outline 1.) Introduction 2.) Heavy Quarkonia in QGP Charmonium Spectral + Correlation Functions In-Medium T-Matrix with “lattice-QCD” potential 3.) Open Heavy Flavor in QGP Heavy-Light Quark T-Matrix HQ Selfenergies + Transport HQ and e± Spectra Implications for sQGP 4.) Constituent-Quark Number Scaling 5.) Conclusions
2.1 Quarkonia in Lattice QCD • direct computation of • Euclidean Correlation Fct. spectral function • accurate lattice “data” forEuclidean Correlator hc cc [Datta et al ‘04] • S-wave charmonia little changed to ~2Tc[Iida et al ’06, Jakovac et al ’07, • Aarts et al ’07]
- In-MediumQ-QT-Matrix: 2.2 Potential-Model Approaches for Spectral Fcts. J/y s/w2 [Karsch et al. ’87, …, Wong et al. ’05, Mocsy+Petreczky ‘06, Alberico et al. ‘06, …] Y’ • bound state + free continuum model • too schematic for broad / dissolving states cont. w Ethr • Lippmann-Schwinger Equation [Mannarelli+RR ’05,Cabrera+RR ‘06] - 2-quasi-particle propagator: - bound+scatt. states, nonperturbative threshold effects (large) • Correlator: L=S,P
2.2.2 “Lattice QCD-based” Potentials • accurate lattice “data” for free energy:F1(r,T) = U1(r,T) – T S1(r,T) • V1(r,T) ≡ U1(r,T) - U1(r=∞,T) • (much) smaller binding for • V1=F1, V1 = (1-a) U1 + a F1 [Cabrera+RR ’06; Petreczky+Petrov’04] [Wong ’05; Kaczmarek et al ‘03]
2.3 Charmonium Spectral Functions in QGP withinT-Matrix Approach (lattice U1 Potential) Fixedmc=1.7GeV In-mediummc* (U1subtraction) hc hc • gradual decrease of binding, large rescattering enhancement • hc , J/y survive until ~2.5Tc , ccup to ~1.2Tc
2.4 Charmonium Correlators above Tc • lattice U1-potential, in-medium mc*,zero-mode Gzero ~ Tc(T) [Cabrera+RR in prep.] T-Matrix Approach Lattice QCD [Aarts et al. ‘07] hc cc1 • qualitative agreement
_ _ q q Microscopic Calculations of Diffusion: q,g c • pQCD elastic scattering:g-1= ttherm ≥20 fm/cslow [Svetitsky ’88, Mustafa et al ’98, Molnar et al ’04, Zhang et al ’04, Hees+RR ’04, Teaney+Moore‘04] • D-/B-resonance model:g-1= ttherm ~ 5 fm/c “D” parameters: mD , GD c c • recent development: lQCD-potential scattering [van Hees, Mannarelli, Greco+RR ’07] 3.) Heavy Quarks in the QGP • Brownian • Motion: Fokker Planck Eq. [Svetitsky ’88,…] Q scattering rate diffusion constant
3.2 Potential Scattering in sQGP [Mannarelli+RR ’05] • T-matrix for Q-q scatt. in QGP • Casimir scaling for color chan. a • in-medium heavy-quark selfenergy: • Determination of potential • fit latticeQ-Qfree energy • currently • significant • uncertainty _ [Shuryak+ Zahed ’04] [Wong ’05]
3.2.2 Charm-Light T-Matrix with lQCD-based Potential Temperature Evolution + Channel Decomposition [van Hees, Mannarelli, Greco+RR ’07] • meson and diquarkS-wave resonances up to 1.2-1.5Tc • P-waves and (repulsive) color-6, -8 channels suppressed
3.2.3 Charm-Quark Selfenergy + Transport Selfenergy Friction Coefficient • charm quark widths Gc = -2 ImSc ~ 250MeV close to Tc • friction coefficients increase(!) with decreasing T→Tc!
3.3 Heavy-Quark Spectra at RHIC • relativistic Langevin simulation in thermal fireball background Nuclear Modification Factor Elliptic Flow pT [GeV] pT [GeV] • T-matrix approach ≈ effective resonance model • other mechanisms: radiative (2↔3), … [Wiedemann et al.’05,Wicks et al.’06, Vitev et al.’06, Ko et al.’06]
3.5 Single-Electron Spectra at RHIC • heavy-quark hadronization: • coalescence at Tc [Greco et al. ’04] • + fragmentation • hadronic correlations at Tc • ↔ quark coalescence! • charm bottom crossing • at pTe ~ 5GeV in d-Au • (~3.5GeV in Au-Au) • ~30% uncertainty due to • lattice QCD potential • suppression “early”, v2 “late”
3.6 Maximal “Interaction Strength” in the sQGP • potential-based description ↔ strongest interactions close to Tc • - consistent with minimum in h/s at ~Tc • - strong hadronic correlations at Tc ↔ quark coalescence • semi-quantitative estimate for diffusion constant: weak coupl. h/s ≈ 4/15 n <p> ltr=1/5 T Ds strong coupl. h/s≈ 1/4p Ds(2pT) = 1/2 T Ds h/s≈ (2-4)/4p close toTc [Lacey et al. ’06]
4.) Constitutent-Quark Number Scaling of v2 [Molnar ’04, Greco+Ko ’05, Pratt+Pal ‘05] • CQNS difficult to recover withlocalv2,q(p,r) • “Resonance Recombination Model”: • resonance scatt. q+q → M close to Tc using Boltzmann eq. • quark phase-space distrib. from relativistic Langevin, hadronization at Tc: - [Ravagli+RR ’07] • energy conservation • thermal equil. limit • interaction strength • adjusted to v2max ≈7% • no fragmentation • KT scaling at both • quark and meson level
5.) Summary and Conclusions • T-matrix approach with lQCD internal energy (UQQ): • S-wave charmonia survive up to ~2.5Tc, • consistent with lQCD correlators + spectral functions • T-matrix approach for (elastic) heavy-light scattering: • large c-quark width + small diffusion • “Hadronic” correlations dominant (meson + diquark) • - maximum strength close to Tc ↔ minimum in h/s !? • - naturally merge into quark coalescence at Tc • Observables: quarkonia, HQ suppression+flow, dileptons,… • Consequences for light-quark sector? Radiative processes? • Potential approach?
3.5.2 The first 5 fm/c for Charm-Quark v2 + RAA Inclusive v2 • RAA built up earlier than v2
3.2.4 Temperature Dependence of Charm-Quark Mass • significant deviation only close to Tc
2.3.3 HQ Langevin Simulations: Hydro vs. Fireball Elastic pQCD (charm) + Hydrodynamics [Moore+Teaney ’04] as , g 1 , 3.5 0.5 , 2.5 0.25,1.8 • Tc=165MeV, • t ≈ 9fm/c • sgQ ~ (as/mD)2 • as and mD~gT • independent • (mD≡1.5T) • as=0.4, mD=2.2T • ↔ D(2pT) ≈ 20 • hydro ≈ • fireball • expansion [van Hees,Greco+RR ’05]
3.6 Heavy-Quark + Single-e± Spectra at LHC • relativistic Langevin simulation in thermal fireball background • resonances inoperative at T>2Tc , coalescence at Tc • harder input spectra, slightly more suppression RAA similar to RHIC
2.5 Observables at RHIC: Centrality + pT Spectra • update of ’03 predictions: - 3-momentum dependence • - less nucl. absorption + c-quark thermalization [X.Zhao+RR in prep] • direct ≈ regenerated (cf. ) • sensitive to: tctherm , mc* , Ncc [Yan et al. ‘06]
coalescence essential for • consistent RAA and v2 • other mechanisms: • 3-body collisions, … [Liu+Ko’06, Adil+Vitev ‘06] 3.2 Model Comparisons to Recent PHENIX Data Single-e±Spectra [PHENIX ’06] • pQCD radiative E-loss with • 10-fold upscaled transport coeff. • Langevin with elastic pQCD + • resonances + coalescence • Langevin with 2-6 upscaled • pQCD elastic
3.2.2 Transport Properties of (s)QGP ‹x2›-‹x›2 ~ Ds·t , Ds ~ 1/g Spatial Diffusion Coefficient: Charm-Quark Diffusion Viscosity-to-Entropy: Lattice QCD [Nakamura +Sakai ’04] • small spatial diffusion → strong coupling • E.g. AdS/CFT correspondence:h/s=1/4p, DHQ≈1/2pT • resonances: DHQ≈4-6/2pT , DHQ ~ h/s ≈ (1-1.5)/p
Fragmentation only • large suppression from resonances, elliptic flow underpredicted (?) • bottom sets in at pT~2.5GeV 2.4 Single-e± at RHIC: Effect of Resonances • hadronize output from Langevin HQs (d-fct. fragmentation, coalescence) • semileptonic decays: D, B → e+n+X
2.4.2 Single-e± at RHIC: Resonances + Q-q Coalescence fqfrom p, K [Greco et al ’03] Elliptic Flow Nuclear Modification Factor • less suppression and morev2 • anti-correlation RAA ↔ v2 from coalescence (both up) • radiative E-loss at high pT?!
Nuclear Modification Factor Elliptic Flow • resonances → large charm suppression+collectivity, not for bottom • v2 “leveling off ” characteristic for transition thermal → kinetic 2.3 Heavy-Quark Spectra at RHIC • Relativistic Langevin Simulation: • stochastic implementation of HQ motion in expanding QGP-fireball • “hydrodynamic” evolution of bulk-matterbT , v2 [van Hees,Greco+RR ’05]
2.1.3 Thermal Relaxation of Heavy Quarks in QGP Charm: pQCD vs. Resonances Charm vs. Bottom pQCD “D” • tctherm ≈ tQGP ≈ 3-5 fm/c • bottom does not thermalize • factor ~3 faster with • resonance interactions!
5.3.2 Dileptons II: RHIC [R. Averbeck, PHENIX] [RR ’01] QGP • low mass: thermal! (mostly in-medium r) • connection to Chiral Restoration: a1 (1260)→ pg ,3p • int. mass:QGP (resonances?)vs.cc → e+e-X (softening?) -