280 likes | 451 Views
RePast Tutorial II. Week 6. Today’s agenda. IPD: Experimental dimensions EvolIPD model Random numbers How to build a model (2) Scheduling. Three crucial questions:. 1. Variation : What are the actors’ characteristics? 2. Interaction : Who interacts with whom, when and where?
E N D
RePast Tutorial II Week 6
Today’s agenda • IPD: Experimental dimensions • EvolIPD model • Random numbers • How to build a model (2) • Scheduling
Three crucial questions: 1. Variation: What are the actors’ characteristics? 2. Interaction: Who interacts with whom, when and where? 3. Selection: Which agents or strategies are retained, and which are destroyed? (see Axelrod and Cohen. 1999. Harnessing Complexity)
Experimental dimensions • 2 strategy spaces:B, C • 6 interaction processes:RWR, 2DK, FRN, FRNE, 2DS, Tag • 3 adaptive processes:Imit, BMGA, 1FGA
“Soup-like” topology: RWR In each time period, a player interacts with four other random players. ATFT ALLC ALLD ALLD TFT TFT ALLC
ALLD ALLD ALLD TFT TFT ALLC TFT ALLC ATFT 2D-Grid Topology: 2DK The players are arranged on a fixed torus and interact with four neighbors in the von-Neumann neighborhood.
ATFT TFT ALLC ATFT ALLD ALLD TFT ALLC TFT Fixed Random Network: FRN The players have four random neighbors in a fixed random network. The relations do not have to be symmetric.
Adaptation through imitation Imitation ATFT ALLC ALLD ALLD TFT TFT? ALLC Neighbors at t
Adaptation with BMGAComparison error (prob. 0.1) Genetic adaptation 6.0 Fixed spatial neighborhood 2.8 2.2 9.0 0.8
BMGA continued Copy error (prob. 0.04 per “bit”) Genetic adaptation 6.0 Fixed spatial neighborhood p=0; q=0 => p=1; q=0 2.8 6.0 9.0 0.8
Tutorial Sequence November 21SimpleIPD: strategy space Today EvolIPD: RWR December 05GraphIPD: charts and GUI GridIPD: 2DK December 12ExperIPD: batch runs and parameter sweeps
EvolIPD: flowchart setup() buildModel() resetPlayers() interactions() adaptation() play() play() remember() remember() addPayoff() addPayoff() reportResults() step()
Markovian vs. asynchronous adaptation Markovian t-1 t asynchronous
privatevoid stepMarkovian() { // We carry out four sub-activities: // Reset the agents' statistics // Loop through the entire agent list for (int i = 0; i < numPlayers; i++) { // Pick the agent final Player aPlayer = (Player) agentList.get(i); resetPlayer(aPlayer); } // Let them interact with their neighbors for (int i = 0; i < numPlayers; i++) { final Player aPlayer = (Player) agentList.get(i); interactions(aPlayer); } // FIRST STAGE OF DOUBLE BUFFERING! // Let all agents calculate their adapted type first for (int i = 0; i < numPlayers; i++) { final Player aPlayer = (Player) agentList.get(i); adaptation(aPlayer); } // SECOND STAGE OF DOUBLE BUFFERING! // Second, once they know their new strategy, // let them update to the new type for (int i = 0; i < numPlayers; i++) { final Player aPlayer = (Player) agentList.get(i); updating(aPlayer); } reportResults(); // Report some statistics } privatevoid stepAsynchronous() { // We carry out four sub-activities: for (int i = 0; i < numPlayers; i++) { // Pick an agent at random final Player aPlayer = (Player) agentList.get(this.getNextIntFromTo(0, numPlayers - 1)); // Reset the agent's statistics resetPlayer(aPlayer); // Let it interact with its neighbors interactions(aPlayer); // Let it adapt adaptation(aPlayer); // Let it update its new type updating(aPlayer); } reportResults(); // Report some statistics } Going sequential
How to work with random numbers • RePast full-fledged random number generator:uchicago.src.sim.util.Random • Encapsulates the Colt library random number distributions:http://dsd.lbl.gov/~hoschek/colt/ • Each distribution uses the same random number stream, to ease the repeatability of a simulation • Every distribution uses the MersenneTwister pseudo-random number generator
Pseudo-random numbers • Computers normally cannot generate real random numbers • “Random number generators should not be chosen at random” - Knuth (1986) • A simple example (Cliff RNG): X0 = 0.1 Xn+1 = |100 ln(Xn) mod 1| x1 = 0.25850929940455103 x2 = 0.28236111950289455 x3 = 0.4568461655760814 x4 = 0.3408562751932891 x5 = 0.6294370918024157 x6 = 0.29293640856857195 x7 = 0.7799729122847907 x8 = 0.849608774153694 x9 = 0.29793011540822434 x10 = 0.08963320319223556 x11 = 0.2029456303939412 ...
Simple random numbers distribution • Initialization:Random.setSeed(seed);Random.createUniform();Random.createNormal(0.0, 1.0); • Usage:int i = Random.uniform.nextIntFromTo(0, 10);double v1 = Random.normal.nextDouble();double v2 = Random.normal.nextDouble(0.5, 0.3); Automatically executed by SimpleModel standard deviation mean standard deviation mean standard deviation
Beta Binomial Chi-square Empirical (user-defined probability distribution function) Gamma Hyperbolic Logarithmic Normal (or Gaussian) Pareto Poisson Uniform … Available distributions Normal Beta
Custom random number generation • May be required if two independent random number streams are desirable • Bypass RePast’s Random and use the Colt library directly: import cern.jet.random.*;import cern.jet.random.engine.MersenneTwister;public class TwoStreamsModel extends SimModel { Normal normal; Uniform uniform; publicvoid buildModel() {super.buildModel(); MersenneTwister generator1 = new MersenneTwister(123); MersenneTwister generator2 = new MersenneTwister(321); uniform = new Uniform(generator1); normal = new Normal(0.0, 1.0, generator2); }publicvoid step() {int i = uniform.nextIntFromTo(0, 10);double value = normal.nextDouble(); }} seeds
How to build a model (2) • If more flexibility is desired, one can extend SimModelImpl instead of SimpleModel • Differences to SimpleModel • No buildModel(), step(), ... methods • No agentList, schedule, params, ... fields • Most importantly: no default scheduling • Required methods:public void setup()public String[] getInitParam()publicvoid begin()public Schedule getSchedule()public String getName()
SimModelImpl import uchicago.src.sim.engine.Schedule; import uchicago.src.sim.engine.SimInit; import uchicago.src.sim.engine.SimModelImpl; public class MyModelImpl extends SimModelImpl { public static final int TFT = 1; public static final int ALLD = 3; private int a1Strategy = TFT; private int a2Strategy = ALLD; private Schedule schedule; private ArrayList agentList; public void setup() { a1Strategy = TFT; a2Strategy = ALLD; schedule = new Schedule(); agentList = new ArrayList(); } public String[] getInitParam() { returnnew String[]{"A1Strategy"}; }
SimModelImpl (cont.) public String getName() { return "Example Model"; }publicvoid begin() { Agenta1 = newAgent(a1Strategy); Agenta2 = newAgent(a2Strategy); agentList.add(a1); agentList.add(a2); schedule.scheduleActionBeginning(1, this,"step"); } publicvoid step() { for (Iterator iterator = agentList.iterator(); iterator.hasNext();) { Agentagent = (Agent) iterator.next(); agent.play(); } } introspection
SimModelImpl (cont.) public String[] getInitParam() { returnnew String[]{"A1Strategy"}; } publicint getA1Strategy() { returna1Strategy; } publicvoid setA1Strategy(intstrategy) { this.a1Strategy = strategy; } publicstaticvoid main(String[] args) { SimInit init = new SimInit(); SimModelImpl model = new MyModelImpl(); init.loadModel(model, null, false); }
How to use a schedule • Schedule object is responsible for all the state changes within a Repast simulation schedule.scheduleActionBeginning(1, new DoIt()); schedule.scheduleActionBeginning(1, new DoSomething()); schedule.scheduleActionAtInterval(3, new ReDo()); tick 1: DoIt, DoSomething tick 2: DoSomething, DoIt tick 3: ReDo, DoSomething, DoIt tick 4: DoSomething, DoIt tick 5: DoIt, DoSomething tick 6: DoSomething, ReDo, DoIt
Different types of actions • Inner class class MyAction extends BasicAction {publicvoid execute() {doSomething(); } }schedule.scheduleActionAt(100, new MyAction()); • Anonymous inner classschedule.scheduleActionAt(100, new BasicAction(){ publicvoid execute() {doSomething(); } ); • Introspection schedule.scheduleActionAt(100, this, "doSomething");
Schedule in SimpleModel publicvoid buildSchedule() { if (autoStep) schedule.scheduleActionBeginning(startAt, this,"runAutoStep"); else schedule.scheduleActionBeginning(startAt, this, "run"); schedule.scheduleActionAtEnd(this, "atEnd"); schedule.scheduleActionAtPause(this, "atPause"); schedule.scheduleActionAt(stoppingTime, this, "stop", Schedule.LAST); } public void runAutoStep() {public void run() { preStep();preStep(); autoStep();step(); postStep();postStep(); } } private void autoStep() { if (shuffle) SimUtilities.shuffle(agentList); int size = agentList.size(); for (int i = 0;i < size; i++) { Stepable agent = (Stepable)agentList.get(i); agent.step(); } }
Scheduling actions on lists • An action can be scheduled to be executed on every element of a list: publicclass Agent {publicvoid step() { }}schedule.scheduleActionBeginning(1, agentList, "step"); • is equivalent to: publicvoid step() { for(Iterator it = agentList.iterator(); it.hasNext();) { Agent agent = (Agent) it.next(); agent.step(); } }schedule.scheduleActionBeginning(1, model, "step"); step() inAgent step() in SimpleModel
Different types of scheduling • scheduleActionAt(double at, …)executes at the specified clock tick • scheduleActionBeginning(double begin, …)executes starting at the specified clock tick and every tick thereafter • scheduleActionAtInterval(double in, …)executes at the specified interval • scheduleActionAtEnd(…)executes the end of the simulation run • scheduleActionAtPause(…)executes when a pause in the simulation occurs