1.16k likes | 1.33k Views
A Myopic History of Great Lakes Remote Sensing. Dr. John R. Schott Digital Imaging and Remote Sensing Laboratory (DIRS) Center for Imaging Science Rochester Institute of Technology schott@cis.rit.edu. Lake Ontario Comparison of Temperature & Transmission. Temperature. % Transmission.
E N D
A Myopic History of Great Lakes Remote Sensing Dr. John R. Schott Digital Imaging and Remote Sensing Laboratory (DIRS) Center for Imaging Science Rochester Institute of Technology schott@cis.rit.edu
Lake Ontario Comparison of Temperature & Transmission Temperature % Transmission
Ontario Mid-lakeTemperature Sections late April mid May early June late June
IFYGL Aerial Photos Off Ginna May 22, 1978
Landsat Evolution Number of Bands Spot Size Year 1972 4 80 m 1982 7 30 m 1999 7 15 m Rochester false color infrared true color
Landsat TM Ontario Thermal Bar
LANDSAT: April 23, 1991 Lakes Ontario & Erie Cold center Warm ring True Color Composite Thermal Channel
Landsat TM April 23, 1991
LANDSAT: May 11, 1992 Lakes Ontario & Erie Cold center Warm ring True Color Composite Thermal Channel
Landsat June 12, 1992 True Color Composite Thermal Channel
Landsat TM Braddock Bay to Irondequoit Bay True Color Composite (Enhanced) Thermal band warm cold June 23, 1996
AGLE Simulation including Niagara Inflow 22C 0C 4C 11C
MISIRIT’s Modular Imaging Spectrometer Instrument Ginna Nuclear Power Plant
MISIRIT’s Modular Imaging Spectrometer Instrument West Roch Embayment Russell Power Plant July 5, 2000 Altitude=4000ft East Roch Embayment Genesee River Plume July 5, 2000 Altitude=4000ft MISI thermal image of Russell Power Plant Effluent
MODIS Moderate Resolution Imaging Spectroradiometer Resolution Trades: Temporal: Global Coverage in 1- 2 days Spatial: 1 km pixels (low) Spectral: 36 bands .4-14.4um
MODIS March 5, 2005
SeaWiFS April 12, 1998
SeaWiFS September 3, 1999
Hyperspectral Imagery: AVIRIS solar glint AVIRIS Flightlines May 20, 1999 11:45 AM Digital Imaging and Remote Sensing Laboratory
Hyperspectral Concentration Maps AVIRIS Image Cube: Lake Ontario Shoreline • Provide user community with water quality maps derived from hyperspectral data to address environmental issues. Dr. Rolando Raqueno
Spectral Bottom Type Mapping Dr. Anthony Vodacek AVIRIS May 20, 1999
Spectral Bottom Type Mapping RIT’s MISI October 1, 2002 Dr. Anthony Vodacek
Airborne Hyperspectral Imagery Analysis Assessing Near Shore Water Quality Modeling Strategy • Solar Spectrum Model (MODTRAN) • Atmospheric Model (MODTRAN) • Air-Water Interface (DIRSIG/Hydrolight) • In-Water Model (HYDROMOD= • Hydrolight/OOPS + MODTRAN) • Bottom Features(HYDROMOD/DIRSIG) Airborne Hyperspectral Imagery Analysis Assessing Near Shore Water Quality MODTRAN ALGE Model Agriculture Urban bacteria phytoplankton CDOM macrophytes HydroLight… particles & algae Bottom Type A Bottom Type B
Model of Land/Water Interface What the Future Holds TopoBathymetry required
Where are we going? • GIS with satellite derived temporal history of Landuse/Landcover • Hydrological models • precipitation • stream flow • materials transport • Environmental forcing functions • insolation • cloud cover • wind speed • precipitation • air temperature GL GIS
Where are we going? • Lakewide Hydrodynamic models with local • and regional inputs • temperature and flow models • material transport models • bio-optical models • productivity models driven by temperature, flow, transport, and optical models • bio-optical models to predict remotely sensed observables • Use of thermal and reflective remote sensing and surface measurements in feedback loops to calibrate models GL GIS HydroMod
Future Remote Sensing Trends: • commercial satellites • more than just pretty pictures / actual • physical earth measurements • higher spatial resolution • increased spectral resolution/ • hyperspectral imaging • RS links to models: • inputs to climate models • verification and validation of models • more products available to public IKONOS MODIS AVIRIS MISI
Airborne Hyperspectral Imagery Analysis Assessing Near Shore Water Quality Agriculture Urban bacteria CDOM phytoplankton macrophytes particles & algae Bottom Type A Bottom Type B
Remote Sensing Platforms: Airborne compared to Satellite • Advanced Very High Resolution Radiometer (1km) • Landsat 5 (120m) Landsat 7 (60m) • MISI (2-10ft) LANDSAT AVHRR MISI
Coverage vs. Spatial, Spectral, Temporal Resolutions AVHRR ~1km 1 day Landsat7 30m (vis) 16 day
Chlorophyll Concentration CZCS Winter
Chlorophyll Concentration CZCS Spring
Chlorophyll Concentration CZCS Summer
Chlorophyll Concentration CZCS Fall
Global Biosphere Ocean - CZCS Land - AVHRR
Chernobyl, Russia Landsat April 29, 1986
Thermal Patterns in Reactor Cooling Pond April 22, 1986 plant in normal use, pond is warm May 8, 1986 pond in ambient, no activity April 29, 1986 pond cooling, little or no activity
Gulf Stream Composite Thermal Patterns Great Lakes and Western Atlantic