100 likes | 713 Views
Dilations. Example 1. Write the coordinates of the vertices after a dilation with a scale factor of 3, centered at the origin. K (3, - 1) → K ′( , ) L (3, 0) → L ′( , ) M ( - 2, 0) → M ′( , ) . Example 2.
E N D
Example 1 Write the coordinates of the vertices after a dilation with a scale factor of 3, centered at the origin. K(3, -1) → K′( , ) L(3, 0) → L′( , ) M(-2, 0) → M′( , )
Example 2 Write the coordinates of the vertices after a dilation with a scale factor of 4, centered at the origin. J(-2, -2) → J′( , ) K(-2, 2) → K′( , ) L(-1, 2) → L′( , ) M(-1, -2) → M′( , )
Example 3 Write the coordinates of the vertices after a dilation with a scale factor of 1/3 centered at the origin. L(9, -3) → L′( , ) M(9, 9) → M′( , ) N(0, -6) → N′( , )
Example 4 Determine whether the dilation from Figure A to Figure B is a reduction or enlargement. Then, fing the values of the variables. y cm 4.5 cm B A
Example 5 Determine whether the dilation from Figure A to Figure B is a reduction or enlargement. Then, fing the values of the variables. 6 cm A B y cm
Example 5 Find the scale factor. Tell whether the dilation is a reduction or an enlargement. Then, find the values of the variables. 13.5 3 5.2 y 3 x
Example 6 Determine whether the following scale factor would create an enlargement, reduction, or isometric figure. a. 7.9 b. 2/3 c. 8/5
Example 7 Given the point and its image, determine the scale factor: Q(14, 9); Q’(4.76, 3.06)