330 likes | 424 Views
Tagommenders : Connecting Users to Items Through Tags. Shilad Sen Macalester College Jesse Vig , John Riedl GroupLens Research. Tagommenders Analyze user interactions to infer liking (preferences) for tag concepts. Recommend items related to tag concepts liked by users.
E N D
Tagommenders:Connecting Users to Items Through Tags Shilad Sen Macalester College Jesse Vig, John Riedl GroupLens Research
Tagommenders Analyze user interactions to infer liking (preferences) for tag concepts. Recommend items related to tag concepts liked by users.
Tagommender Goals • Recommend items using just tags. (Delicious) • Improve item recommendations with ratings by by using tags. (LibraryThing / Amazon) • accuracy • flexibility • explainability(Vig, IUI 2009).
Tagommender Flow Chart WALL-E animation robots pixar tag preference inference tag-based recommendation
MovieLens Tagging • Tagging introduced in 2006 • 15,000 distinct tags • 127,000 tag applications: • <user, tag, movie> • 4000 users applied >= 1 tag • 7700 movies with >= 1 tag app
Outline • Tag preference inference • Item recommendation • Auto-tagging and wrap-up
Outline • Tag preference inference • Item recommendation • Auto-tagging and wrap-up
Step 1: Tag Preference Inference ? animation robots pixar • Infer a user’s interest in tags from: • tags user applied • tags user searched for • user’s clicks on movie hyperlinks • user’s movie ratings
118,017 ratings by 995 users
Movie-Rating Algorithm cars 4 of 12 0.8 9 of 38 0.9 1 of 36 0.1
Generative Model: Expressive probabilistic processes. Model movie ratings. Separate model for every user, tag. Bayes-Rating Algorithm
Bayes-Rating Algorithm Jill’s Ratings for animated Movies N(μ=3.8,σ=0.7)
Bayes-Rating Algorithm WALL-E p(t| WALL-E) 1.0 - p(t| WALL-E) t = animation not t all possible normal dists for ratings for animated movies N(μu,σu) N(μu,t,σu,t) N(μ=2.0,σ=1.0) N(μ=4.0,σ=0.5)
Bayes-Rating Algorithm All movies m rated by Jill tagged with animation t = animation not t all possible normal dists for ratings for animated movies Toy Story WALL-E Shrek
Outline • Tag preference inference • Item recommendation • Auto-tagging and wrap-up
Tagommender Flow Chart WALL-E animation robots pixar tag preference inference tag-based recommendation
Standard machine learning problem With / without ratings Sixstandard recommender baselines Evaluate predictive performance Step #2: Tag-Based Recommendation
Outline • Tag preference inference • Item recommendation • Auto-tagging and wrap-up
Tag preference inference: Systems can infer user preferences for tags. Item ratings help tag prefinference. Tag prefs can be used for auto-tagging. Tagommenders outperform traditional recommenders: Without ratings: moderate edge (10%). With ratings: slight edge (2%). Summary of Tagommenders
Future Work Alternative modalities for tags. Quality vs. preference. Thank You! GroupLens. MovieLens users. NSF grants IS 03-24851 and IIS 05-34420. Macalester College.
Shilad Sen ssen@macalester.edu (photo by flickr user SantiMB)