1 / 22

Chapter 1: Object Oriented Paradigm

Chapter 1: Object Oriented Paradigm. 1.1 Data Abstraction and Encapsulation. OOP allows programmer to separate the details that are important to the user myCoin.flip (); myCoin.getValue (); from the details that make the abstraction work

nash-smith
Download Presentation

Chapter 1: Object Oriented Paradigm

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Chapter 1: Object Oriented Paradigm

  2. 1.1 Data Abstraction and Encapsulation • OOP allows programmer to • separate the details that are important to the user • myCoin.flip(); myCoin.getValue(); • from the details that make the abstraction work • if (Math.random() > 0.5) side = "heads"; else side="tails"; • Accomplished by organizing code into • Interface: details important to user • Implementation: “unimportant” details hidden from user • Who is "user?" • person who writes the application…and/or…YOU !

  3. Strings represented on Macs vs Linux

  4. 1.2 The Object Model • A convenient design method • program data managed by objects • objects manage internal data, determines state • point object manages its x,y coordinates • coin object manages its side indicator • student record object manages it's name, ID, GPA • this helps manage chaos as complexity grows • reduces unexpected linkages between parts of program

  5. Primary focus of class • how we implement and evaluate objects with methods that are logically complex • how we can use the objects we create • objects mainly will be data structures, • our primary interest! • occasionally we will develop control structures that manipulate other objects

  6. 1.3 Object-Oriented Terminology • Applied to a Ratio class – see Demo1 in mod1 download • encapsulation • object • instance • class • fields • methods • constructor • utility methods (reduce, gcd) • static methods (gcd)

  7. 1.4 A Special-Purpose Class: A Bank Account • Manages data: • balance and account number (or account name) • Performs: • getAccount • getBalance • deposit • withdraw

  8. BankAccount equals() method public boolean equals(Object other) // pre: other is a valid bank account // post: returns true if this bank account is the same as other { BankAccount that = (BankAccount)other; // two accounts are the same if account numbers are the same return this.account.equals(that.account); }

  9. Class Object • Every class is a descendant of Object • Defines fundamental methods • equals() same data as another object • toString() string representation for display • clone() makes an identical copy • If you don't define your own versions of these, automatic (usually defective) ones will be provided

  10. Memory Model of BankAccount object BankAccountjane; jane = new BankAccount(“J. Doe”, 345.67); Memory allocated by the declaration BankAccountjane; jane= new BankAccount(“J. Doe”, 345.67); null100 jane The number 100 indicates the memory location where the object resides account J. Doe balance 345.67

  11. Shallow vs Deep Copy • There are two ways to “copy” an object • Deep copy creates a clone of the object • The objects data values are copied into the clone • Shallow copy creates reference to the object • The location of the object is copied into a reference variable • After a • Deep copy, two distinct objects exist • Can change one object’s data without changing the other’s • Shallow copy two references to one object exists

  12. Code of Shallow and Deep Copies • Shallow copy is similar to copying primitives jon = jane; • Deep copy • requires a class method (e.g., in the BankAccount class) public BankAccountclone() { BankAccount copy = new BankAccount(); copy.account = account; copy.balance= balance; return copy; } • Invoked as jon = jane.clone(); //copy jane into jon

  13. jon jane 100 200 location 100 location 200 account account jon j. doe j. doe deep copy balance balance 187.95 345.67 345.67 A Deep Copy of the Object jane into the Object jon Memory Model of Two Types of Copies jon jane shallow copy 100 200 200 location 200 j. doe 345.67 A Shallow Copy of the Object jane into the Object jon

  14. Using Scanner and File • Scanner – a class representing objects that read input streams or files and extracts primitive data types from them • File – a class representing a path to a location on disk or other media • We will now apply these to our BankAccount app

  15. 1.5 A General-Purpose Class: An Association • very general class represents a connection between two kinds of objects protected Object theKey; // the key of the key-value pair protected Object theValue; // the value of the key-value pair • Association can be used to link • ID (key) with an employee record • Two words from different languages (pig latin) • Methods: setValue, setKey, getValue, getKey

  16. Protected vs Private • Usually, it is best to restrict methods as much as possible. • private: member is only used within class itself • protected: member is available to other classes in a package or to subclasses through inheritance • public: member is available to any user

  17. An app that uses Association • atinLay – a Pig Latintranslator • This program uses the argument list set up in main, as would be obtained from a “command line” execution • We (or you!) could convert it to read from the System.in console with a Scanner object

  18. 1.6 Sketching an Example: A Word List • Suppose we want to develop a Hangman app • The program should : • Select a random word from a list of words (TODO!) • Receive user guesses and draw stick figure (demo) • We propose to develop a WordList class to help us with item number 1) • BTW this is a “Data Structure” • How do we design such a thing????

  19. 5 Step Data Structure Design Process

  20. Sketch an example test applicationhelps familiarize operations needed

  21. Sketch the “interface” for the classnames of methods, parameters, return types

  22. Develop the implementation • Choose an internal representation • An array of words? • Write the methods • Test and debug using tester class • Then write the complete implementation

More Related