1 / 7

Patterned Matrix Pertemuan 13

Patterned Matrix Pertemuan 13. Matakuliah : Matrix Algebra for Statistics Tahun : 2009. Patterned. Matrices that have a particular pattern occur frequently in statistics. Such matrices are typically used as intermediary steps in proofs and in perturbation techniques.

nash
Download Presentation

Patterned Matrix Pertemuan 13

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Patterned Matrix Pertemuan 13 Matakuliah : Matrix Algebra for Statistics Tahun : 2009

  2. Patterned Matrices that have a particular pattern occur frequently in statistics. Such matrices are typically used as intermediary steps in proofs and in perturbation techniques. Patterned matrices also occur in experimental designs and in certain variance matrices of random vectors

  3. Some Identities a) Identities that are useful, Assumed (that all inverses exist) i) VA-1(A - UD-1V) = (D - VA-1U)D-1V, ii) D-1V(A - UD-lV)-1 = (D - VA-1U)VA-1 b) Setting A = I, D = -I, and interchanging U and V in a) ii), we have that U(I + VU)-1= (I + UV)-LU

  4. Continued… (c) If I + U is nonsingular, (I + U)-1 = I - (I + U ) - W = I - U(I + U) -1 (d) U'A-1U(I + U'A-1U)-1= I - (I + U'A-1U)-1. e) If A and B are n x n complex matrices, then In+ AA' = (A + B)(In+ B*B)-1(A + B)* + In-AB*)(I, +BB*)-1(In -AB*)*

  5. If A is nonsingular and the other matrices are conformable square or rectangular matrices (e.g., A is nxn, U is nxp , B is pxq, and V is qxn), then (A + UBV)-1= A-1- (I + A-1UBV)-1A-1UBVA-1 =A-1- A-1(I + UBVA-1)-1UBVA-1 =A-1- A-1U(1 + BVA-1U)-1BVA-1 =A-1- A-1UB(1 + VA-1UB)-1VA-1 =A-l - A-1UBV(1 + A-1UBV)-1A-1 =A-1- A-1UBVA-1(I + UBVA-1)-1

  6. Gentle [1998: 621 notes that in linear regression we often need inverses of various sums of matrices and gives the following additional identities for nonsingular A and B. a) (A + BB')-lB = A-1B(I + B'A-1B) -1 b) (A-1+ B-l) -1= A(A + B) -1B. c) A(A + B) -1B = B(A + B)-lA. d) A-1+ B-1= A-l(A + B)B-1 We can also add, for nonsingular A + B, e)A - A(A + B)-1A = B - B(A + B) -1B.

More Related