1 / 38

Introduction to Nonextensive Statistical Mechanics

Introduction to Nonextensive Statistical Mechanics. Grupo Interdisciplinar de Sistemas Complejos. A. Rodríguez. Dpto . Matemática Aplicada y Estadística. UPM. August 26th , 2009. EPSRC Symposium Workshop on Quantum Simulations. Outline. General concepts q - entropy

nassor
Download Presentation

Introduction to Nonextensive Statistical Mechanics

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. IntroductiontoNonextensiveStatisticalMechanics Grupo Interdisciplinar de Sistemas Complejos A. Rodríguez Dpto. Matemática Aplicada y Estadística. UPM August 26th, 2009 EPSRC Symposium Workshop on Quantum Simulations.

  2. Outline • General concepts • q-entropy • ConexionwithThermodynamics • Someapplications • XY Model • Scaleinvariantprobabilisticmodel • Summary

  3. q-Entropy Boltzmann-Gibbsentropy Tsallisentropy q-logarithm: q-exponential:

  4. ConexionwithThermodynamics Boltzmann’sprinciple

  5. ConexionwithThermodynamics Boltzmanndistribution

  6. ConexionwithThermodynamics Gaussian: q-Gaussian:

  7. q-Gaussians q = 1

  8. q-Gaussians q = 0

  9. q-Gaussians q = -1

  10. q-Gaussians

  11. q-Gaussians q = 2

  12. q-Gaussians q = 2.9

  13. q-Gaussians

  14. Central LimitTheorem Nrandom variables: a) Independence: CLT (L-G)-CLT b) Global correlations: q-CLT

  15. Outline • General concepts • q-entropy • ConexionwithThermodynamics • Someapplications • XY Model • Scaleinvariantprobabilisticmodel • Summary

  16. XY Model asymmetry intensity of H g=0: XX model. |g|=1: Isingmodel. 0<|g|<1: XY model. F. Carusso and C. Tsallis, Phys. Rev. E 78, 021102 (2008)

  17. XY Model von NeumannEntropy: TsallisEntropy: F. Carusso and C. Tsallis, Phys. Rev. E 78, 021102 (2008)

  18. XY Model Ising (g=l=1) F. Carusso and C. Tsallis, Phys. Rev. E 78, 021102 (2008)

  19. XY Model central charge =1 • Conformalfieldtheory: (P. Calabrese et al, J. Stat. Mech.: TheoryExp. (2004), P06002 • Ising and XY : • XX : F. Carusso and C. Tsallis, Phys. Rev. E 78, 021102 (2008)

  20. Outline • General concepts • q-entropy • ConexionwithThermodynamics • Someapplications • XY Model • Scaleinvariantprobabilisticmodel • Summary

  21. x1 0 1 p 1-p Scaleinvariance Ndistinguisablebinaryindependent variables N=1 1 A. Rodríguez, C. Tsallis and V. Schammle. J. Stat. Mech: theor. exp. P09006 (2008)

  22. x2 0 1 p2 1 p(1-p) 0 p(1-p) (1-p)2 Scaleinvariance Ndistinguisablebinaryindependent variables N=2 x1 A. Rodríguez, C. Tsallis and V. Schammle. J. Stat. Mech: theor. exp. P09006 (2008)

  23. Scaleinvariance Ndistinguisablebinaryindependent variables N=2 x1 x2 0 1 p2 p 1 p(1-p) 0 p(1-p) (1-p)2 1-p p 1-p A. Rodríguez, C. Tsallis and V. Schammle. J. Stat. Mech: theor. exp. P09006 (2008)

  24. p2(1-p) p(1-p)2 p(1-p)2 (1-p)3 p2 p(1-p) p(1-p) (1-p)2 p3 p2(1-p) p2(1-p) p(1-p)2 Scaleinvariance N=3 x3=0 x3=1 A. Rodríguez, C. Tsallis and V. Schammle. J. Stat. Mech: theor. exp. P09006 (2008)

  25. p2(1-p) p(1-p)2 p(1-p)2 p2(1-p) p2 p(1-p) p(1-p) Scaleinvariance N=3 (1-p)3 1 p 1-p N=0 N=1 N=2 p3 p2(1-p) p(1-p)2 (1-p)2 A. Rodríguez, C. Tsallis and V. Schammle. J. Stat. Mech: theor. exp. P09006 (2008)

  26. + + + p2 p(1-p) Scaleinvariance Leibniz rule 1 p 1-p N=0 N=1 N=2 (1-p)2 p2(1-p) p(1-p)2 p3 (1-p)3 N=3 A. Rodríguez, C. Tsallis and V. Schammle. J. Stat. Mech: theor. exp. P09006 (2008)

  27. p2 p(1-p) Scaleinvariance CLT 1 1 p 1-p N=0 N=1 N=2 1 1 1 (1-p)2 2 1 p2(1-p) p(1-p)2 p3 (1-p)3 1 3 3 1 N=3 Pascal triangle A. Rodríguez, C. Tsallis and V. Schammle. J. Stat. Mech: theor. exp. P09006 (2008)

  28. p2 p(1-p) Invarianttriangles 1 p 1-p N=0 N=1 N=2 (1-p)2 p2(1-p) p(1-p)2 p3 (1-p)3 N=3 A. Rodríguez, C. Tsallis and V. Schammle. J. Stat. Mech: theor. exp. P09006 (2008)

  29. Invarianttriangles Leibniz triangle N=0 N=1 N=2 N=3 A. Rodríguez, C. Tsallis and V. Schammle. J. Stat. Mech: theor. exp. P09006 (2008)

  30. Invarianttriangles Leibniz triangle N=0 N=1 N=2 N=3 A. Rodríguez, C. Tsallis and V. Schammle. J. Stat. Mech: theor. exp. P09006 (2008)

  31. Invarianttriangles Leibniz triangle N=0 N=1 N=2 N=3 A. Rodríguez, C. Tsallis and V. Schammle. J. Stat. Mech: theor. exp. P09006 (2008)

  32. Invarianttriangles N=0 N=1 N=2 N=3 A. Rodríguez, C. Tsallis and V. Schammle. J. Stat. Mech: theor. exp. P09006 (2008)

  33. Invarianttriangles N=0 N=1 N=2 N=3 A. Rodríguez, C. Tsallis and V. Schammle. J. Stat. Mech: theor. exp. P09006 (2008)

  34. Invarianttriangles A. Rodríguez, C. Tsallis and V. Schammle. J. Stat. Mech: theor. exp. P09006 (2008)

  35. Invarianttriangles A. Rodríguez, C. Tsallis and V. Schammle. J. Stat. Mech: theor. exp. P09006 (2008)

  36. Invarianttriangles

  37. Outline • General concepts • q-entropy • ConexionwithThermodynamics • Someapplications • XY Model • Scaleinvariantprobabilisticmodel • Summary

  38. Summary • NonextensiveStatisticalMechanicsallowstoaddressnon-equilibriumstationarystates (in Physics, Biology, Economics…) withconcepts and methods similar tothose of the BG StatisticalMechanics. • Theentropy (bridge betweenmechanicalmicroscopiclaws and classicalthermodynamics) mayadoptdifferentexpressionsdependingonthesystem: orothers. • Thevalue of q isdeterminedbythemicroscopicdynamics of thesystem, whichisfrequentlyunknown, so itgenerallycannotbepredictedbyfirstprinciples. • Itis a currentlydevelopingtheory, withmany open questions as thereslationshipbetweenscaleinvariance, extensivity and q-Gaussianity.

More Related