430 likes | 557 Views
Optimal Experiment Design (OED) for kernel ridge regression and the Minimum Volume Covering Ellipsoid (MVCE). Tijl De Bie (K.U.Leuven). Joint work with: Alexander Dolia John Shawe-Taylor Michael Titterington Chris Harris. The next hour…. Optimal experiment design?. OED?
E N D
Optimal Experiment Design (OED)for kernel ridge regressionandthe Minimum Volume Covering Ellipsoid (MVCE) Tijl De Bie (K.U.Leuven) Joint work with: Alexander Dolia John Shawe-Taylor Michael Titterington Chris Harris
The next hour… Tijl De Bie - KULeuven
Optimal experiment design? OED? Notation Examples Deliverables… Tijl De Bie - KULeuven
Optimal experiment design? OED? Notation Examples Deliverables… Tijl De Bie - KULeuven
Optimal experiment design? OED? Notation Examples Deliverables… Tijl De Bie - KULeuven
Notation OED? Notation Examples Deliverables… Tijl De Bie - KULeuven
Examples OED? Notation Examples Deliverables… Tijl De Bie - KULeuven
Examples OED? Notation Examples Deliverables… Tijl De Bie - KULeuven
Deliverables in this talk… OED? Notation Examples Deliverables… Tijl De Bie - KULeuven
Least squares regression (LS) Least squares Ridge regression Kernel RR Tijl De Bie - KULeuven
Least squares regression (LS) Least squares Ridge regression Kernel RR Tijl De Bie - KULeuven
Optimal experiment design for LS Least squares Ridge regression Kernel RR Tijl De Bie - KULeuven
Optimal experiment design for LS Least squares Ridge regression Kernel RR Tijl De Bie - KULeuven
Optimal experiment design for LS Least squares Ridge regression Kernel RR Tijl De Bie - KULeuven
Optimal experiment design for LS Least squares Ridge regression Kernel RR Tijl De Bie - KULeuven
Ridge regression (RR) Least squares Ridge regression Kernel RR Tijl De Bie - KULeuven
Ridge regression (RR) Least squares Ridge regression Kernel RR Tijl De Bie - KULeuven
Ridge regression (RR) Least squares Ridge regression Kernel RR Tijl De Bie - KULeuven
Optimal experiment design for RR Least squares Ridge regression Kernel RR Tijl De Bie - KULeuven
Optimal experiment design for RR Least squares Ridge regression Kernel RR Tijl De Bie - KULeuven
Optimal experiment design for RR Least squares Ridge regression Kernel RR Tijl De Bie - KULeuven
Kernel ridge regression (KRR) Least squares Ridge regression Kernel RR Tijl De Bie - KULeuven
Kernel ridge regression (KRR) Least squares Ridge regression Kernel RR Tijl De Bie - KULeuven
Kernel ridge regression (KRR) Least squares Ridge regression Kernel RR Tijl De Bie - KULeuven
Kernel D-OED Least squares Ridge regression Kernel RR Tijl De Bie - KULeuven
Kernel D-OED Least squares Ridge regression Kernel RR Tijl De Bie - KULeuven
OED: summary D-OED MVCE standard Least squares Ridge regression Kernel RR regularized kernel Tijl De Bie - KULeuven
Now over to novelty detection! Novelty detection MVCE and duality Regularized MVCE Kernel MVCE Tijl De Bie - KULeuven
Now over to novelty detection! Novelty detection MVCE and duality Regularized MVCE Kernel MVCE Tijl De Bie - KULeuven
Regularized MVCE Novelty detection MVCE and duality Regularized MVCE Kernel MVCE Tijl De Bie - KULeuven
Kernel MVCE Novelty detection MVCE and duality Regularized MVCE Kernel MVCE Tijl De Bie - KULeuven
Kernel MVCE Novelty detection MVCE and duality Regularized MVCE Kernel MVCE Tijl De Bie - KULeuven
Kernel MVCE Novelty detection MVCE and duality Regularized MVCE Kernel MVCE Tijl De Bie - KULeuven
MVCE: summary Novelty detection MVCE and duality Regularized MVCE Kernel MVCE Tijl De Bie - KULeuven
MVCE: summary D-OED MVCE standard regularized Novelty detection MVCE and duality Regularized MVCE Kernel MVCE kernel Tijl De Bie - KULeuven
MVCE: dealing with outliers Novelty detection MVCE and duality Regularized MVCE Kernel MVCE Tijl De Bie - KULeuven
Experiments – MVCE Linear Tijl De Bie - KULeuven
Experiments – MVCE Linear, centered Tijl De Bie - KULeuven
Experiments – MVCE RBF-kernel Tijl De Bie - KULeuven
Experiments – MVCE RBF-kernel Soft-margin Tijl De Bie - KULeuven
Experiments – D-OED Tijl De Bie - KULeuven
Experiments – D-OED Costs: Random vs Uniform vs OED (blue) 2-norm infinity norm 1-norm Tijl De Bie - KULeuven
Conclusions Tijl De Bie - KULeuven