1 / 9

Integer Caratheodory theorems

Integer Caratheodory theorems. Linear Caratheodory. Given A={a 1 ,…, a n }  IR d . For all v cone(A) there exists B  A, |B| ≤ d st v cone(B) Proof : Si A n’est pas indep, la comb lin permet d’eliminer un de ses elements.

Download Presentation

Integer Caratheodory theorems

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Integer Caratheodory theorems

  2. Linear Caratheodory Given A={a1,…, an}  IRd. For all v cone(A) there exists B  A, |B| ≤ d st v cone(B) Proof : Si A n’est pas indep, la comb lin permet d’eliminer un de ses elements.

  3. Hilbert bases : generators with nice integrality properties integer vectors of the cone with integer coefficients: Caratheodorybounds depending on n. Cook, Fonlupt, Schrijver (1984) : 2d – 1 S. (1990) : 2d – 2, d for d=3 d in combopt cases, and stronger conjectures Bruns, Gubeladze (1999): counterexamples …

  4. multiprocessor scheduling C fixed integer (typically small) INPUT:l1,…,lC job lengths, n1,…, nC coeffs,m,DIN QUESTION:Is there a schedule with m machines, in D time ? McCormick, Smallwood, Spieksma ‘93: ‘C=2’  P C arbitrary: NP-hard C fixed : open ‘bin packing with condensed input’

  5. Example C=3 D=30 l=(15, 10, 6) n=(1, 2, 4) 2 0 0 1 1 0 1 0 3 0 1 0 2 2 0 0 5 0 2 1 4 Min = ? 2 or 3 ? 3 (If 2, we need a solution with a gap of 1)

  6. Cutting Stock C integer. Given n, lINC , D  IN M = n where the columns  ≥ 0 of M are solutions of  integer lTx ≤ D, x integer minimize the sum of  NP-hard ; Is it in NP ? Yes ! (Eisenbrand ’05)

  7. Trilling: le problème de l’imprimeur C modèles D poses imprimées sur le même film demandes: ni du modèle i (i=1, …, C) . Trouver le nombre d de films différents avec au plus D poses sur chacun la multiplicité j (j=1, …, d) des films, tq les demandes sont satisfaites et 10 000 d + (1 + … + d ) est min ‘m’

  8. Example C=5 D=6 (Si C, D fix: polynomial !) n=(29976, 35121, 20749, 75286, 90959) Minimiser 10 000 fois le nombre de films + nombre de tirages 1 0 29976 1 0 35121 0 3 20749 2 0 75286 2 3 90959 37643 6917 1 0 0 3 0 2 2 1 3 0 31790 11707

  9. New Caratheodory Thm 1: X  +d , n:= |X| ≥ 2 and bint.cone (X) Then  B  X, |B| ≤ log2 (bi +1): bint.cone (B) Proof: If |X| >  log2(bi +1), then X has two disjoint subsets with equal sums. Thm 2: X  +d , n:= |X| ≥ 2 and bint.cone (X) Then  B  X, |B| ≤d log(2nM+1) bint.cone (B) M:=max | | in X;=d1+ + d log2 (M+1) d log d

More Related