240 likes | 368 Views
Ecology: Lectures 14-16. Predation November 2, 2005. Lotka-Volterra equation: Prey isocline ( d V/ d t = 0). Fig. 15.1a. Lotka-Volterra equation: Predator isocline ( d C/ d t = 0). Fig. 15.1b. Lotka-Volterra model: with both predator and prey isoclines. Fig. 15.1 c.
E N D
Ecology: Lectures 14-16 Predation November 2, 2005
Lotka-Volterra equation:Prey isocline (dV/dt = 0) • Fig. 15.1a
Lotka-Volterra equation:Predator isocline (dC/dt = 0) • Fig. 15.1b
Lotka-Volterra model: with both predator and prey isoclines • Fig. 15.1 c
Lotka-Volterra prediction:Predator-prey flux through time • Fig. 15.1 d
Rosenzweig-MacArthur: Stable cycle • Fig. 15.3 a
Rosenzweig-MacArthur: Stable/dampened oscillations • Fig. 15.3 b
Rosenzweig-MacArthur: Unstable/increasing oscillations • Fig. 15.3 c
Rosenzweig-MacArthur: Refuge • Fig. 15.3 d
Gause’s predation experiments:Didinium predation on Paramecium • Fig. 15.4
Huffaker’s experiments: mite predation and complex environments • Fig. 15.6
Functional responses of predator to prey concentrations • Type 1 response: Fig. 15.7 a
Functional responses of predator to prey concentrations • Type 2 response: Fig. 15.7 b
Functional responses of predator to prey concentrations • Type 3 response: Fig. 15.7 c
Prey switching • Fig. 15.10
Aggregative response • Fig. 15.12
Optimal foraging: bluegill sunfish Fig. 15.16
Warning coloration From Campbell et al., Biology
Batesian mimicry • Harmless hawkmoth larva resembles the diamond-shaped head of a poisonous snake From Campbell et al., Biology
Müllerian mimicry • Both the cuckoo wasp and the yellow jacket deliver toxic stings. From Campbell et al., Biology
Cryptic coloration • Poorwill and frog From Campbell et al., Biology
Lynx and hare cycling • Fig. 16.19
Hare and winter vegetation (“browse”) cycling • Fig. 16.9