1 / 38

Ferromagnetism

Ferromagnetism. Characteristics experiments and its „ origin “ ( by Florian Lüttner ). Contents. General expressions for describing magnetism and ferromagnetism Different kinds of magnetism - short overview What is ferromagnetism ?

nate
Download Presentation

Ferromagnetism

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Ferromagnetism Characteristicsexperimentsandits „origin“ (by Florian Lüttner)

  2. Contents • General expressionsfordescribingmagnetismandferromagnetism • Different kindsofmagnetism - shortoverview • Whatisferromagnetism? - thephenomenonand ist characteristics • Ferromagnetismferrimagnetismandantiferromagnetism • Observation ofmagneticstructures • „Origin offerromagnetism“ - Singletandtrippletstatesfor a twoelectronsystem - Spin Hamiltonian - Heisenbergmodel - Meanfieldapproximation - curie-temperature

  3. General expressions • Magnetization: • Vectorfieldthatexpressesthedensityof permanent orinducedmagneticmoments

  4. Magneticsusceptibility: Dimensionless proportionalityconstantbetweenthedegreeofmagnetizationandtheappliedmagneticfield

  5. Magneticmoment: Determines the angular momentum (ortorque) a magnet will experience in an externalappliedmagneticfield isthevectorthatrelatesthealigningtorque on an objectfrom an externallyappliedmagneticfieldtothefieldvectoritself. With an unknown sample orobjectyoucanmeasurethetorqueby an appliedknownexternalmagneticfieldandgetthemagneticmoment.

  6. Gyromagneticratio: Ratio ofitsmagneticmomenttoits angular momentum (classicalbody) The gyromagneticratiocanbewrittenas Thereforethemagneticmomentis For an isolatedelectron (quantummechanical) An electronhas a spin noclassicalrotation (quantummechanicalphenomenon) so

  7. But with a correctionfactororelectron g-factor Forthis is Andthereforeiscalculatedas

  8. Electron spin: • Followsthe same mathematicallawsasquantized angular momenta, but • Noclassicalrotation quantummechanicalphenomenon • Spin as an intrinsic form of angular momentumforelementaryparticles, hadronsandnucleiwith a definite magnitudeand a direction (upand down) • Spin quantumnumberonlytakes half-integer values (0, ½, 1, 3/2, 2, …) • Onlyspindirectioncanbechanged in spinuporspin down but not ist value • The calculationofthemagneticmomentof an electronneeds an electron g factor different from 1 (like in classicalcases) • Spin angular momentum

  9. Spin angular momentum So S also canbecalculatedwith Forthistheelectron (fermion) spinquantumnumberandthe angular momentumcanbecalculatedwith forthis and in thiscase

  10. Short overview • Paramagnetism • - < 0 • - magnetizationis different from 0 aslongas an externalappliedmagneticfield • exists • - atoms, moleculesandlatticedefectswith an oddnumberofelectrons • (the total spinof a system must not bezero) • - freeatomsandionswith a partlyfilledinnershell • - metals • - fewcompoundswith an evennumberofelectrons (molecularoxygen)

  11. Diamagnetism • - > 0 • - magnetizationis different from 0 aslongas an externalappliedmagneticfield • exists • - theinnermagnetizationis in theoppositedirectiontotheappliedexternalfield • (wanttovanishthefield) • - Bismut • - Carbon • - superconducter • (crowdsthemagneticfieldlinesoftheappliedfield out ofthesuperconducter) • Ferromagnetism • - spontaniousmagneticmoment (saturationmoment) • - electronspinsandmagneticmomenthavetobearranged in a regular • manner

  12. Whatisferromagnetism? Ferromagneticorders • Spontanious magnetization saturationmagnetization • Vanishes not  temperatureunderthe Curie-temperature () • theorderofelectronspinsvanishes after theexternalmagneticfieldisturned off (Paramagnetism) • Frominternalinteractionofthemagneticmomentsofthespins (exchangefield)

  13. Characteristics(hysteresis)

  14. Materials with different formsofmagnetism

  15. Ferromagnetism, ferrimagnetismandantiferromagnetism • Usethelanguageappropriateofsolids (magneticionslocalizedatlatticepoints) • ferromagnetism • Herewehave in general non vanishingvectormomentsofthemagneticionsbelow a temperature (orderedspinorientation) • Same directionofmagneticmoments (spins)  addupto a netmagnetizationdensity •  ferromagnetism • Microscopicmagneticorderingisrevealedbytheexistanceof a macroscopicbulkmagnetizationdensity • Not all magneticmomentshavetobethe same • Antiferromagnetism • Magneticorderingofthe individual localmomentsvavanishestozero • Nospontaniousmagnetization • Microscopicmagneticorderingcan not berevealedby a macroscopicbulkmagnetizationdensity • Localmomentsorientatedliketwointerpenetratingsublatticeswiththe same structure

  16. ferrimagnetism • Herewehaveeven a non vanishingvectormomentsofthemagneticions • Not the same directionofmagneticmoments (spins) at all • Exchange couplingbetweennearestneighboursmayfavor antiparallel orientation • Neighbourhas not the same valueofmagneticmoment • Leaving a netmagneticmomentforthe solid as a whole • Somemorecomplexarrangementsarepossible • Describtion not withtheabovethreetypes • Specifiingtheordering in termsofspindensity

  17. At anypointalonganydirectionthedensityisdescribedby therefore forferrimagnetsandferromagnetsand forantiferromagnets

  18. Observation ofmagneticstructure • Can beobservedbythescatteringpatternofneutronscattering • Neutrons have a magneticmoment couplestotheelctronicspin • also nonmagnetic Bragg reflectionofneutronsbyionicnuclei •  additional peaks in theelasticneutronscatteringcrosssection • Over themagneticscatteringpeaksarevanished

  19. Crosssectionforneutronelectronscatteringofthe same orderofmagnitudeasforneutronnucleiinteraction • Determination ofthedistributiondirectionandtheorderofthemagneticmoments • Deteminethemagneticstructureofantiferromagnets

  20. Origin offerromagnetism • Magnetic effects in a material bythepaulipriciple (evenwithnospindependentterms in theHamiltonian) • considerTwo-electronsystem(withspinindependetHamiltonian) • stationarystateistheproductof a purely orbital stationarystate • satisfies orbital Schrödingerequation • Fourspinstateswithbothelectrons in levelsof definite • Chooselinearcombinationsofthesestatestoget definite valuesofthe total spin (anditscomponent)

  21. Singletstate Triplet states Combination oftwoparticlescanonly carry a total spinof 1 or 0 (occupytripletorsingletstate) Anycombination (like) canbecalculatedby Span a 4-dimensional room ( for particles) CalculatedwithClebsch-Gordon coefficients

  22. Substituting in thefourbasisstates for for for for Thereforeyougetthreestateswith total spin angular momentum 1 andonestatewith total spin angular momentum 0

  23. Total wavefunctionchangesignundersimultaniousninterchangeofthespin () and orbital parts () • istheproductofitsspinand orbital parts • Thereforeif do not changesignunderinterchangeof •  solutionissymmetric •  must describestateswith • changesignunderinterchangeof •  antisymmetricsolution •  must describestateswith • If andarethelowesteigenvaluesofthespin-independent orbital schrödingerequationassociatedtothesymmetricandantisymmetricsolutionofitthenthegroundstate will onlyhavespin 0 orspin 1 • This onecanrequireonlyby an examinationofthespin-independent Schrödingerequation • Fortwoelectronproblemtheground-statewavefunctionhavetobesymmetric • Onlyfortwoelectronsystem • Havetoestimatethatcanbegeneralizedtotheanologousproblemof a N-atom solid

  24. Spin Hamiltonian • A wayto express dependenceof a two-electronconfigurationspin on thesinglet-triplet energysplitting • Importantfortheanalyzationofenergiesofthespinconfigurationof real insulatingsolids • protonswithgreatdistances twoindependent hydrogen atomsdescribedbythegroundstate • (fourfolddegeneratedwithtwopossibleorientationsofeachelectronspin) • Bring theprotonsclosertoeachother (molecule)  splittingofthefourfolddegeneracy (due toatominteractions) • This interactionissmallcomparedwithotherexcitationenergiesof a two-electronsystem • Simplifyingbyignoringhigherstatesoverfourfolddegenerated • Moleculeas a simple four-statesystem • Representgeneralstateofthemoleculeby linear combinationoftheforurloweststates • Convenienttohave an operator • Spin Hamiltonian

  25. Same eigenvaluesas in the original Hamiltonianwithinthefourstatemanifold • Eigenfunctionsgivethespinofeachstate • Each individual spinoperatorsatisfies • Thereforethe total spinsatisfies • hastheeigenvaluesandwiththeequationaboveforwegettheeigenvaluesoftheoperatorasforthesingletstateandforeachtripletstate • Therefore is • Redefiningthezeroofenergyandomittheconstantwhichiscommonto all fourstatesweget

  26. Heisenberg model • isthescalarproductofthespinoperators parallel spinsfor (leadstoferromagnets) and antiparallel spinsfor (leadstoferrimagnetsandantiferromagnets) • Coupling in thespinHamiltonian do not depend on thespatialdirectionwithrespectto but on theralativeorientationofthetwospins • isIsotropic but weneedunisotropictermstodescribeferromagnetism • Includetermsthatbraeakrotationalsymmetrie in spinspace • Spin Hamiltonianonlyforinsulatingmaterials (Hubbard modelformetals) • Therefore N widelyseperatedionswith a smalloverlapoftheelectronwavefunction • Onlyinteractionbetweennearestneighbours • Groundstate will be gegenerated • Spin Hamiltoniandescribesthesplittingofthisgroundstatewhenionsaresomeclosertogetherthatthesplittingsaresmallcomparedwithanyotherexcitationenergies • The eigenvaluesofthegivesthesplitlevels • Formanycasesofinterestis in the form ofthetwo-spin casesummedover all pairsofions

  27. istheexchangecouplingconstant (exchangeenergy) • Exchange interactionbetweenlocalizedspinsonlyfromcoulombrepulsionandfrompauliprinciple • For angular momentumsdepending on orbital aswellas on spinpartstheHamiltoniandepends on the absolute spinoriantationsaswellas on the relative ones

  28. Meanfieldapproximation • Early analysisoftheferromagneticeffectsby P. Weisswiththemeanfieldtheory • This theoryfailstopredictspinwavesatlowand high temperatures but a goodapproximationat • Supposewefocusourattention on a particularBravaislatticesiteR in the Heisenberg Hamiltonian • With (ferromagnet) • Representsforeachionthe total angular momentumwithspinand orbital partusualtotakethesefictitiousspinstobe parallel tothemagneticmomentoftheion

  29. And isolatingfromthosetermscontaining • Hasthe form of an energyof a spin in an effectiveexternalfield • But thisis an operatordepending on a complicatedway on thedetailedspinconfigurationof all theotherspinatdifferent sitesfromR • Meanfieldapproximation • Replacewithitstermalequilibriummeanvalue • (replace all spinvaluesbyitstermalequilibrium) • In ferromagnets all spinshavethe same meanvalue • In termsofthe total magnetizationdensityitis

  30. Replace eachspin in byitsmeanvalue Wearriveattheeffectivefield with and Every magneticatomexperiences not onlythemagnetizationofitsnearestneighbour but an averagemagnetizationof all theothermagneticatoms With a spontaniousmagnetizationatitisusual in ferromagneticswithnoappliedfieldwecanassume as

  31. Curie temperature • It isknownthat • Sinceisgivenby • without an appliedfieldthemagnetizationisgivenby • Withthemagnetizationdensitywithnoappliedfield • Seperate in a pair ofequationslike • Putbothequationsasgraphs in a plot

  32. Important aretheintersectionsof and • Ifandonlyiftheslopeofthestraightlineislessthanthatoneofattheorigin, at a nonzerovalueof x • canbecalculated in termsofzerofieldsusceptibility, calculated in theabsenceofinteractions, for

  33. From theanalysisof a setofidenticalionsof angular momentum J onecangetcurieslaw • with • Comparecurieslawwith (canread off thevalueof ) • Critical temperatureisgivenby

  34. Not exactly • More precisewiththeIsingmodel • Simplification oftheHeisenbergmodel onlywithspins on oneaxes (z-axes) andonlyspinswiththevalue • onlyforneighboringions

  35. Sources • Books • Ashcroft/Mermin, Solid State Physics Ch. 31, 32, 33 • Charles Kittel, Introductions to Solid State Physics (eight edition) Ch.12, 13 • Weblinks • http://de.wikipedia.org/wiki/Ferromagnetismus • http://en.wikipedia.org/wiki/Gyromagnetic_ratio • http://de.wikipedia.org/wiki/Diamagnetismus • http://de.wikipedia.org/wiki/Paramagnetismus • http://en.wikipedia.org/wiki/Magnetic_susceptibility • http://en.wikipedia.org/wiki/Magnetization • http://de.wikipedia.org/wiki/Elektronenspin

  36. http://www.google.de/imgres?imgurl=http%3A%2F%2Fupload.wikimedia.org%2Fwikipedia%2Fcommons%2Fthumb%2F0%2F04%2FPermeability_by_Zureks.svg%2F220px-Permeability_by_Zureks.svg.png&imgrefurl=http%3A%2F%2Fde.wikipedia.org%2Fwiki%2FParamagnetismus&h=170&w=220&tbnid=4qdQ9MfddgwCgM%3A&zoom=1&docid=19Wq_TNMEP5fmM&ei=FSc4U4OmGsfOtQbikIHoCQ&tbm=isch&iact=rc&dur=1325&page=1&start=0&ndsp=15&ved=0CFsQrQMwAQhttp://www.google.de/imgres?imgurl=http%3A%2F%2Fupload.wikimedia.org%2Fwikipedia%2Fcommons%2Fthumb%2F0%2F04%2FPermeability_by_Zureks.svg%2F220px-Permeability_by_Zureks.svg.png&imgrefurl=http%3A%2F%2Fde.wikipedia.org%2Fwiki%2FParamagnetismus&h=170&w=220&tbnid=4qdQ9MfddgwCgM%3A&zoom=1&docid=19Wq_TNMEP5fmM&ei=FSc4U4OmGsfOtQbikIHoCQ&tbm=isch&iact=rc&dur=1325&page=1&start=0&ndsp=15&ved=0CFsQrQMwAQ • http://hyperphysics.phy-astr.gsu.edu/hbase/solids/imgsol/hystcurves.gif • http://hyperphysics.phy-astr.gsu.edu/hbase/solids/imgsol/hyloop.gif • http://de.wikipedia.org/wiki/Ising-Modell • http://de.wikipedia.org/wiki/Heisenberg-Modell_%28Quantenmechanik%29

  37. Thankyouforyourattention!!

More Related