1 / 25

HDA case study

HDA case study. S. Skogestad, 10 Apr 2006 Thanks to Antonio Araújo. CH 3. →. +. H 2. +. CH 4. +. Heat. +. H 2. →. 2. ←. Process Description. Benzene production from thermal-dealkalination of toluene (high-temperature, non-catalytic process). Main reaction: Side reaction

nate
Download Presentation

HDA case study

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. HDA case study • S. Skogestad, 10 Apr 2006 • Thanks to Antonio Araújo

  2. CH3 → + H2 + CH4 + Heat + H2 → 2 ← Process Description • Benzene production from thermal-dealkalination of toluene (high-temperature, non-catalytic process). • Main reaction: • Side reaction • Excess of hydrogen is needed to repress the side reaction and coke formation. • References for HDA process: • McKetta (1977) – first reference on the process; • Douglas (1988) – design of the process; • Wolff (1994) – discuss the operability of the process. • No references on the optimization of the process for control structure design purposes. Benzene Toluene Diphenyl

  3. Purge (H2 + CH4) Compressor H2 + CH4 Toluene Quench Mixer FEHE Furnace PFR Separator Cooler CH4 Toluene Benzene Toluene Column Stabilizer Benzene Column Diphenyl Process Description

  4. Steady-state operational degrees of freedom 14

  5. Steady-state operational degrees of freedom 8 Purge (H2 + CH4) 7 Compressor 1 Furnace 3 H2 + CH4 Quencher Toluene Mixer FEHE Reactor 4 5 2 Cooler 6 13 11 9 Separator Benzene CH4 Toluene Toluene Column Benzene Column Stabilizer Diphenyl 14 12 10

  6. Cost Function and Constraints • The following profit is maximized (Douglas’s EP): -J = pbenDben – ptolFtol – pgasFgas – pfuelQfuel – pcwQcw – ppowerWpower - psteamQsteam + Σ(pv,iFv,i) • Constraints during operation: • Production rate: Dben≥ 265 lbmol/h. • Hydrogen excess in reactor inlet: FHyd / (Fben + Ftol + Fdiph) ≥ 5. • Bound on toluene feed rate: Ftol ≤ 300 lbmol/h. • Reactor pressure: Preactor ≤ 500 psia. • Reactor outlet temperature: Treactor ≤ 1300 °F. • Quencher outlet temperature: Tquencher = 1150 °F. • Product purity: xDben ≥ 0.9997. • Separator inlet temperature: 95 °F ≤ Tflash ≤ 105 °F. • + Distillation constraints • Manipulated variables are bounded.

  7. Disturbances

  8. Optimization Benzene price Disturbance

  9. Optimization • 14 steady-state degrees of freedom • 10 active constraints: • Pure toluene feed rate (UB) • By-pass valve around FEHE (LB) • Reactor inlet hydrogen-aromatics ratio (LB) • Flash inlet temperature (LB) • Methane mole fraction in stabilizer bottom (UB) • Benzene mole fraction in stabilizer distillate (UB) • Toluene mole fraction in benzene column bottom (LB) • Benzene mole fraction in benzene column distillate (LB) • Diphenyl mole fraction in toluene column bottom (LB) • Toluene mole fraction in toluene column distillate (LB) • 1 equality constraint: 11. Quencher outlet temperature • 3 remaining unconstrained degrees of freedom.

  10. Optimization – Active Constraints Purge (H2 + CH4) Compressor Equality Furnace 11 2 H2 + CH4 Quencher Toluene Mixer FEHE Reactor 3 1 Cooler 8 6 10 Separator 4 Benzene CH4 Toluene Toluene Column Benzene Column Stabilizer Diphenyl 9 7 5

  11. Candidate Controlled Variables • Candidate controlled variables: • Pressure differences; • Temperatures; • Compositions; • Heat duties; • Flow rates; • Combinations thereof. • 138 candidate controlled variables might be selected. • 14 degrees of freedom. • Number of different sets of controlled variables: • 10 active constraints + 1 equality constraint leaving 3 DOF: • What should we do with the remaining 3 DOF? • Self-optimizing control!!!

  12. Analysis of the linear model a. All measurements (σ(Gfull) = 1.58): I II III II III II III

  13. Optimal self-optimizing variables W II Purge (H2 + CH4) Compressor xbenzene I Furnace 11 2 H2 + CH4 Quencher Toluene Mixer FEHE Reactor Flow 1 1 III Cooler 8 6 10 Separator 4 Benzene CH4 Toluene Toluene Column Benzene Column Stabilizer Diphenyl 9 7 5

  14. Analysis of the linear model b. Separator pressure constant (σ(Gfull) = 1.50): I II III’

  15. Alternative self-optimizing variables W II Purge (H2 + CH4) Compressor xbenzene I Furnace 11 2 H2 + CH4 Quencher Toluene Mixer FEHE Reactor 1 1 p Cooler III’ 8 6 10 Separator 4 Benzene CH4 Toluene Toluene Column Benzene Column Stabilizer Diphenyl 9 7 5

  16. Conclusion steady-state analysis • Many similar alternatives in terms of loss • Need to consider dynamics (Input-output controllability analysis): • RHP-zeros • RHP-poles • Input saturation • Easy of implementation (decentralized control of final 3x3 supervisory control problem)! • Now: Consider “bottom-up” design of control system

  17. Bottom-up design of control system • Start with stabilizing control • Levels • Pressure • Temperatures • Normally start with fastest loops (often pressure) • but let is start with levels

  18. “Bottom-up”: Proposed Control StructureStabilizing Control: Control 7 liquid levels Purge (H2 + CH4) Compressor Furnace H2 + CH4 Quencher Toluene Mixer FEHE Reactor Cooler LC Separator LC LC LC Benzene CH4 Toluene Toluene Column Benzene Column Stabilizer LC LC LC Diphenyl LV-configuration assumed for columns

  19. Avoiding “Drift” I – 4 Pressure loops Pressure with purge Purge (H2 + CH4) Compressor Furnace H2 + CH4 Quencher Toluene Mixer FEHE Reactor Cooler PC LC Separator PC PC PC LC LC LC Benzene CH4 Toluene Toluene Column Benzene Column Stabilizer LC LC LC Diphenyl Column pressures are given

  20. Avoiding “Drift” II – 4 Temperature loops Purge (H2 + CH4) Compressor Furnace H2 + CH4 Quencher Toluene Ts Mixer FEHE Reactor TC ps Cooler PC LC Separator PC PC PC LC LC LC Benzene CH4 Toluene TC TC Toluene Column Benzene Column Stabilizer TC LC LC LC Diphenyl

  21. Now suggest pairings for supervisory control

  22. Control of 11 active constraints. Purge (H2 + CH4) Compressor SP CC Furnace SP SP TC FC H2 + CH4 Quencher Toluene Ts Mixer FEHE Reactor TC ps FC Cooler PC SP LC SP TC Separator PC PC PC LC LC LC Benzene CH4 Toluene SP SP SP CC TC CC CC TC Toluene Column Benzene Column Stabilizer SP SP SP CC TC CC CC LC LC LC 3 DOF left Diphenyl

  23. Control of 3 self-optimizing variables: Optimal set II Purge (H2 + CH4) Compressor I xbenzene SP CC Furnace SP SP TC FC H2 + CH4 Quencher Toluene Flow Ts Mixer FEHE Reactor TC III ps FC Cooler PC SP LC SP TC Separator PC PC PC LC LC LC Benzene CH4 Toluene SP SP SP CC TC CC CC TC Toluene Column Benzene Column Stabilizer SP SP SP CC TC CC CC Difficult supervisory control problem: LC LC LC Diphenyl

  24. Control of 3 self-optimizing variables: Near-Optimal set: SIMPLE II Purge (H2 + CH4) Compressor xbenzene I SP CC Furnace SP SP TC FC H2 + CH4 Quencher Toluene Ts III’ Mixer FEHE Reactor TC ps FC Cooler PC SP LC SP TC Separator PC PC PC LC LC LC Benzene CH4 Toluene SP SP SP CC TC CC CC TC Toluene Column Benzene Column Stabilizer SP SP SP CC TC CC CC LC LC LC Diphenyl

  25. Conclusion HDA • Follow systematic procedure • May want to keep several candidate sets of “almost” self-optimizing variables • Final evaluation: Non-linear steady-state simulations + Dynamic simulations

More Related