340 likes | 680 Views
Resiliencia en Sistemas Eléctricos de Potencia. Desde la academia hacia la industria. Table of contents. Motivation and definitions Power System Resilience: The Framework Resilience: Chilean ISO Application Final Remarks. Before starting….
E N D
Resiliencia en Sistemas Eléctricos de Potencia Desde la academia hacia la industria
Table of contents • Motivation and definitions • Power System Resilience: The Framework • Resilience: Chilean ISO Application • Final Remarks
Before starting… Consultoría líder en toda la cadena de valor de los mercados energéticos, realizando estudios de financiamiento y compra y venta de activos de energía, realizando estudios eléctricos estáticos y dinámicos para la conexión de nuevas centrales o equipos a la red, y asesoramiento regulatorio integral, apoyo en la creación de normas y reglamentos. Su misión es crear y liderar soluciones I+D en energía de carácter interdisciplinario, colaborativo, innovador e inclusivo que aseguren un desarrollo sostenible. Ha encauzado la investigación, innovación y desarrollo en asociaciones con la industria y el sector público, además de colaboraciones académicas estratégicas nacionales e internacionales. www.systep.cl www.centroenergia.cl anavarrol@sytep.cl anavarro@centroenergia.cl
Before starting… • Doctoren Ingeniería Eléctrica, Universidad de Manchester, Inglaterra. It doesn´t matter • Magíster en Sistemas de Potencia, Universidad de Manchester, Inglaterra. • Magíster en Ciencias de la Ingeniería, Pontificia Universidad Católica de Chile. • Diplomado en Políticas de Competencia, Facultad de Economía y Negocios de la Universidad de Chile. • Especialización en Regulación del Sector Eléctrico, Escuela de Regulación de Florencia, Italia. • Ingeniero Civil Industrial con Diploma en Ingeniería Eléctrica, Pontificia Universidad Católica de Chile. • He dictado cursos de distribución para la Universidad de Campinas, Universidad de San Juan, CREG, INTERCON, entre otros. • Me dedico a la consultoría aplicada y a la investigación en Sistemas de Energía 4 • Y también instalo paneles solares
Motivation • So far, in power system history, we have only consider traditional expected failures (e.g., typical outages: high probabilities and low impacts) Control N-1 N-1, EDAC, EDAG
Motivation • There is a need of considering High Impact Low Probability events, HILP, in the planning and operation of power systems • How can we incorporate the HILP assessment in our analysis? Resilience can provide the framework to analyze this type of events. Diego de Almagro - Chile, 2015 Concepción - Chile, 2010
Resilience In general terms, resilience refers to the capability of an entity of getting back to its original state (shape and position) after being under stress. “Resiliencia es la capacidad de un sistema de energía de tolerar perturbaciones continuando con el suministro de energía a los consumidores. Un sistema de energía resiliente es aquel que puede rápidamente recuperarse de grandes shocks proveyendo diversos medios para suministrar energía cada vez que existan cambios en las circunstancias externas” (UK Energy Research Center, 2011) • ¿Cómo nace el interés por este concepto?Preocupación por los efectos del cambio climático: • IPCC pronostica mayor duración e intensidad de los fenómenos relacionados con el clima. • IPCC recomienda no sólo medidas de mitigación sino también de adaptación
Resilience Curve (*) M. Panteli and P. Mancarella, "The Grid: Stronger, Bigger, Smarter?: Presenting a Conceptual Framework of Power System Resilience," in IEEE Power and Energy Magazine, vol. 13, no. 3, pp. 58-66, May-June 2015.
Resilience • Objective • Finding, through optimization models, the investments and operation actions required to increase the resilience of Power Systems. 1) Newton – Picarte Project, collaboration between UK and Chile 2) FONDECYT N°1181928: Resilience on Power Systems
Why earthquakes? In the last 100 years, we got 33 earthquakes above 7.0 Mw 2 out of 10 of the largest earthquakes in the planet has been in Chile The largest earthquake ever was in Chile (9.5 Mw)
Table of contents • Motivation and definitions • Power System Resilience: The Framework • Resilience: Chilean ISO Application • Final Remarks
Resilience – Framework • What should be modelled? Detailed modelling for the Power System Operation Generation and Transmission Modelling Distribution System Modelling Infrastructure Recovery OPF UC UC Service Recovery Hourly sequential simulation
Resilience – Framework • What should be modelled? Source of perturbations System with temporal and geographical variation Outputs Credible Faults Evolution of the expected energy not supplied (EENS) Earthquake Impacts
Resilience – Framework • What should be optimized? Optimization Engine Taking into account the stochasticity in time and location of earthquake impacts To minimize the EENS To increase Resilience Portfolio of optimal investments and operational actions
What have we done to achieve the project objectives? Detailed time-series modelling of Power System Operation. Implementation of simplified Earthquake model. Impact Assessment of Earthquake on the power system infrastructure. Impact Assessment of Earthquake on the power system operation (e.g., energy not supplied). Optimal solutions portfolio for minimizing the earthquake impacts on power systems
1. Power System Operation - Modelling Sequential Monte Carlo simulations Multi-bus system, ramping up/down, min and max power, minimum time on/off Loading Test Case Consideration of recovery times and failure rates. Unit Commitment calculation. Running multiple simulations For each simulation, 24 sequential hours are simulated For each hour, the status of each component is checked (online/offline) which was the previous component status online/offline? Did it fail during this period? Was the component recovered during this period? Test case update according to the new component status Running DCOPF for the hour under analysis Considering the last status for the generation fleet as initial point of the simulation Calculation of the Energy not supply (ENS) for this hour and simulation Store ENS 1/24/17
2. Earthquake modelling • Event intensity distributed geographically on the system: (*) Ground Motion Attenuation Equations for Earthquakes on the Cascadia Subduction Zone, C.B. Crouse, M. EERI
3. Impacts on the Power Systems Infrastructure The fragility curves are statistical tools to represent the probability of being or exceeding certain level of damage for a particular infrastructure (i.e., tower line, transformer, power plant, etc.) according to a certain variable (i.e., ground acceleration for earthquakes, m3/s for floods, etc.). Damage states P ( Slight| Pga = x2) P ( Moderate| Pga = x2) P ( Slight| Pga = x1) P ( Extensive| Pga = x2) P ( Moderate| Pga = x1) P ( Complete| Pga = x2) P ( Extensive| Pga = x1) P ( Complete| Pga = x1) (*) Curves from “HAZUS – MH MR5” published by FEMA (Federal Emergency Management Agency)
4. Impacts on the Power System Operation Sequential approach to analyze the earthquake impacts.
5. Determination of optimal investments Optimization via Simulation (OvS) • Given the complex model needed to realistically mimic the real power system operation under the earthquake action (temporal and spatial effects), there is a trade off between: i) Modelling in detail the power system operation and ii) Achieving the optimal solution for the set of investment to build.
Some results: Lagos, Moreno, Navarro-Espinosa, Panteli, Sacaan, Ordoñez, Mancarella and Rudnick, Identifying Optimal Portfolios of Resilient Network Investments Against Natural Hazards with Applications to Earthquakes, early access IEEE Transaction on Power Systems, November 2019.
Table of contents • Motivation and definitions • Power system Resilience: The Framework • Resilience: Chilean ISO Application • Final Remarks
Resilience in the Chilean Power Systems • Today, we don’t have a formal requirement to incorporate resilience as a planning criteria (although some natural disasters must be considered). • However, the Independent System Operator, since 2017 has started to incorporate this concept in some preliminary analysis. • Unfortunately, in the last Transmission Expansion Report, the resilience concept was not explicitly incorporated (through a formal methodology). Ley 20.936/2016: “Por tanto, la planificación de la transmisión deberá realizarse considerando: ….La minimización de los riesgos en el abastecimiento, considerando eventualidades, tales como aumento de costos o indisponibilidad de combustibles, atraso o indisponibilidad de infraestructura energética, desastres naturales o condiciones hidrológicas extremas; …”
Resilience in the Chilean Power Systems • Proposed methodology in the “Transmission Expansion Report – 2017”.
Resilience in the Chilean Power Systems • Proposed methodology in the “Transmission Expansion Report – 2017”. En este caso se considera la salida de servicio por un año de las unidades en la zona analizada
Resilience in the Chilean Power Systems • Proposed methodology in the “Transmission Expansion Report – 2017”. se realiza una evaluación económica de la operación con el objetivo de definir si el incremento en los costos de operación del sistema debido a la indisponibilidad de la(s) central(es), justifica una nueva obra o adecuación de instalaciones existentes.
Resilience in the Chilean Power Systems • The methodology was applied to analyze the outage of power plants near the coastline (e.g., due to a tsunami after an earthquake) The analysis is taking into account the outage of all generation capacity in “Central Guacolda”, this is 760 MW
Resilience in the Chilean Power Systems • Main problems due to reactive control. Guacolda is often used to consume reactive power from the grid, so it is not available, then voltage problem could occur in the system. • Voltage limit at 500 kV, +/- 3% The voltage problems increase without Guacolda
Resilience in the Chilean Power Systems • Main problems due to reactive control. Guacolda is often used to consume reactive power from the grid, so it is not available, then voltage problem could occur in the system. • Voltage limit at 500 kV, +/- 3% Solution: The incorporation of 775 MVAr: 500 MVAr static and 225 MVAr controllable.
Final Remarks • Although, we can solve the problem from a systemic perspective, we must always include the communities point of view and their contributions (before is too late ). • Resilience can also be provided from the communities !!! Challenge Incorporation of distribution Systems to the Resilience Framework Chilean Earthquake 2010 (8,8 Mw) Most of the problem were located at distribution level
Before finishing… • Team members (working in this project from the Chilean side): • Hugh Rudnick – Power Systems Group, Catholic University of Chile • Fernando Ordoñez– Industrial Engineering Department, University of Chile • Rodrigo Moreno - Power Systems Group, University of Chile • Rafael Sacaan– Power Systems Group, Catholic University of Chile • Tomás Lagos - Industrial Engineering Department, University of Chile • Sebastián Espinoza – Power Systems Group, Catholic University of Chile • Elena de los Ríos - Industrial Engineering School, Polytechnic University of Madrid • Alejandro Navarro – Energy Centre, University of Chile.
Resiliencia en Sistemas Eléctricos de Potencia If you want to walk fast, walk alone If you want to walk far, walk together #We are not at war (#no estamosenguerra) Dr. Alejandro Navarro Espinosa