130 likes | 426 Views
LabMET: ULIXES WP4 and WP7. Dr. ir. Tom Hennebel prof. Nico Boon and dr. Massimo Marzorati. Tasks and challenges within ULIXES. 2. Isolation of “collection 3” in WP4 (Task 4.3): New metal precipitating strains from marine environments Metal Precipitating Marine Bacteria: MP-MB
E N D
LabMET: ULIXES WP4 and WP7 Dr. ir. Tom Hennebel prof. Nico Boon and dr. Massimo Marzorati
Tasks and challenges within ULIXES 2 Isolation of “collection 3” in WP4 (Task 4.3): • New metal precipitating strains from marine environments • Metal Precipitating Marine Bacteria: MP-MB • In situ or ex situ production of catalysts • New hydrogen forming bacteria from marine environments • Hydrogen Producing Marine Bacteria: HP-MB • In situ activation of the MP-MB • Experimental procedures • Screening in batch for Pd precipitating bacteria from partners • Characterisation (SEM, TEM, EDX, …) • Screening in batch for hydrogen producing bacteria from partners • Focus on activity and substrate specificity
Tasks and challenges within ULIXES 3 Development of PCB dechlorination product in WP7 (Task 7.3): • Marine environmental applications never explored • Catalyst poisoning • Activation of Pd in the marine systems • Proof of principle using H2 gas • Using in situ biogenic H2 (backup: MFC based H2 production) • Recovery and release of Pd in the environment • Background values in the sediments of Pd? • Immobilisation of Pd (polymers) • Recovery of Pd
Recent research in relation to Ulixes Production and characterization of biological palladium • Chidambaram, D., Hennebel, T., Taghavi, S., Mast, J., Boon, N., Verstraete, W., van der Lelie, D., & Fitts, J.P. (2010). Concomitant microbial generation of palladium nanoparticles and hydrogen to immobilize chromate. Environmental Science & Technology, 44, 7635-7640. • De Windt, W., Boon, N., Van den Bulcke, J., Rubberecht, L., Prata, F., Mast, J., Hennebel, T., & Verstraete, W. (2006). Biological control of the size and reactivity of catalytic Pd(0) produced by Shewanella oneidensis. Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology, 90, 377-389. Catalytic action of biological palladium in reactors • Forrez, I., Carballa, M., Fink, G., Wick, A., Hennebel, T., Vanhaecke, L., Ternes, T., Boon, N., & Verstraete, W. (2011). Biogenic metals for the oxidative and reductive removal of pharmaceuticals, biocides and iodinated contrast media in a polishing membrane bioreactor. Water Research, 45, 1763-1773. • Hennebel, T., Benner, J., Clauwaert, P., Vanhaecke, L., Aelterman, P., Callebaut, R., Boon, N., & Verstraete, W. (2011). Dehalogenation of environmental pollutants in microbial electrolysis cells with biogenic palladium nanoparticles. Biotechnology Letters, 33, 89-95. • Hennebel, T., De Corte, S., Vanhaecke, L., Vanherck, K., Forrez, I., De Gusseme, B., Verhagen, P., Verbeken, K., Van der Bruggen, B., Vankelecom, I., Boon, N., & Verstraete, W. (2010). Removal of diatrizoate with catalytically active membranes incorporating microbially produced palladium nanoparticles. Water Research, 44, 1498-1506. • Hennebel, T., De Gusseme, B., Boon, N., & Verstraete, W. (2009). Biogenic metals in advanced water treatment. Trends in Biotechnology, 27, 90-98. • Hennebel, T., Simoen, H., De Windt, W., Verloo, M., Boon, N., & Verstraete, W. (2009). Biocatalytic dechlorination of trichloroethylene with bio-palladium in a pilot-scale membrane reactor. Biotechnology and Bioengineering, 102, 995-1002. • Hennebel, T., Simoen, H., Verhagen, P., De Windt, W., Dick, J., Weise, C., Pietschner, F., Boon , N., & Verstraete, W. (In press). Biocatalytic dechlorination of hexachlorocyclohexane by immobilized bio-Pd in a pilot scale dynamic bed reactor. Environmental Chemistry Letters. • Hennebel, T., Verhagen, P., Simoen, H., De Gusseme, B., Vlaeminck, S.E., Boon, N., & Verstraete, W. (2009). Remediation of trichloroethylene by bio-precipitated and encapsulated palladium nanoparticles in a fixed bed reactor. Chemosphere, 76, 1221-1225
UGent Researchers on Ulixes • Nico Boon • Group leader • One person to hire (2011-2014) • Post-doc on Ulixes: Now temp. Massimo Marzorati • Daily research and management • Tom Hennebel • Post doc; synthesis and applications of Bio-Pad • Bart De Gusseme (2011) • Phd student; reductive removal of micropollutants • Simon De Corte (2011-2013) • Phd student; new types of biogenic nanocatalysts (bimetallic particles) • Synthia Maes and Steffie Pardaens (2011-2012) • Master students
Sampling + protocols LabMET involved in WP at “later stages” Samples received from Simone Cappello (group of Michael Yakomov) and contacts with Mohamed Blaghen Protocols for isolation of H2-producing and bio-Pd producing strains + protocols for removal technologies of chlorinated pollutants by bio-Pd => written and sent out by Massimo Marzorati
One-step mechanism: formation of Pd nanoparticles and biogenic H fermentative bacteria (e.g. Citrobacter and Clostridium ) 2 step => 1 step No exogenous H2 required Reactive H-species can immediately be used in dehalogenation reactions glucose CO2 + Pd(II) H H H H H H H
Two step versus one step NaCOOH CO2 H H H H H H H H H H H H H H glucose CO2 Bio-Pd production Pd(II) Pd(II) H2 Bio-Pd activation
Characterization of Pd particles: XRD Pd(0) Metallic Pd Pd(0) Pd(0)
Characterization of Pd particles: TEM Pd nanoparticles produced by Citrobacter braakii after fermentation of glucose TAKE HOME: Fermenters can reduce Pd(II) and form Pd(0) nanoparticles
Characterization of Pd particles: XAFS (synchrotron) Lattice contraction Lattice expansion Lattice parameter Pd crystal Bio-Pd 2 steps (Shewanella) Pd Pd R Bio-Pd 1 step (fermenters) H H Pd Pd H Lattice parameter R TAKE HOME: Fermenter (Clostridium) bio-Pd shows lattice expansion consistent with interstitial hydrogen
Diatrizoate dehalogenation Comparable/faster dehalogenation rates: Anaerobically produced bio-Pd (Clostridium or Citrobacter) vs. Aerobically produced bio-Pd (Shewanella)
Conclusions Fermentative bacteria can co-generate bio-Pd and reactive H-species No exogenous H2 required for catalysis Bio-Pd catalytic activity depends on the species of fermentative bacteria Lower costs New applications making use of the hydrogen reserves in the cells appear possible (Chidambaram et al., ES & T, 44:7635-7640; Hennebel et al., AMB, in press LabMET) => Is all this also possible in marine environments??>