1 / 26

Testing Heavy Quark Energy Loss: pQCD vs AdS/CFT Comparison

This study examines heavy quark energy loss using pQCD and AdS/CFT frameworks. Predictions are discussed in relation to LHC data, highlighting discrepancies and areas of success. Various models and calculations, such as drag coefficients and diffusion coefficients, are compared for their efficacy in describing the phenomena. The potential for AdS/CFT to provide a new perspective on strong coupling in QCD is explored. Emphasis is placed on identifying robust signals in experimental data, particularly in the context of jet physics and momentum loss. The study delves into the interplay between mass and momentum, offering insights into the behavior of different quark species under varying conditions.

nathanlee
Download Presentation

Testing Heavy Quark Energy Loss: pQCD vs AdS/CFT Comparison

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. pQCD vs. AdS/CFT Tested by Heavy Quark Energy Loss William Horowitz Columbia University Frankfurt Institute for Advanced Studies (FIAS) June 26, 2007 arXiv:0706.2336 (LHC predictions) With many thanks to Miklos Gyulassy, Simon Wicks, Jorge Casalderrey-Solana, and Urs Wiedemann. SQM 2007

  2. pQCD Success at RHIC: Y. Akiba for the PHENIX collaboration, hep-ex/0510008 (circa 2005) • Consistency: RAA(h)~RAA(p) • Null Control: RAA(g)~1 • GLV Prediction: Theory~Data for reasonable fixed L~5 fm and dNg/dy~dNp/dy SQM 2007

  3. Trouble for wQGP Picture • e- RAA too small • Hydro h/s too small • v2 too large A. Drees, H. Feng, and J. Jia, Phys. Rev. C71:034909 (2005) (first by E. Shuryak, Phys. Rev. C66:027902 (2002)) M. Djorjevic, M. Gyulassy, R. Vogt, S. Wicks, Phys. Lett. B632:81-86 (2006) D. Teaney, Phys. Rev. C68, 034913 (2003) • wQGP not ruled out, but what if we try… SQM 2007

  4. Strong Coupling • The supergravity double conjecture: QCD  SYM  IIB • IF super Yang-Mills (SYM) is not too different from QCD, & • IF Maldacena conjecture is true • Then a tool exists to calculate strongly-coupled QCD in SUGRA SQM 2007

  5. Qualitative AdS/CFT Successes: AdS/CFT J. J. Friess, S. S. Gubser, G. Michalogiorgakis, S. S. Pufu, Phys. Rev. D75:106003 (2007) J. P. Blaizot, E. Iancu, U. Kraemmer, A. Rebhan, hep-ph/0611393 PHENIX, Phys. Rev. Lett. 98, 172301 (2007) • sstrong=(3/4) sweak, similar to Lattice • h/sAdS/CFT ~ 1/4p << 1 ~ h/spQCD • e- RAA ~ p, h RAA; e- RAA(f) • Mach wave-like structures T. Hirano and M. Gyulassy, Nucl. Phys. A69:71-94 (2006) SQM 2007

  6. AdS/CFT vs. pQCD with Jets • Langevin model • Collisional energy loss for heavy quarks • Restricted to low pT • pQCD vs. AdS/CFT computation of D, the diffusion coefficient • ASW model • Radiative energy loss model for all parton species • pQCD vs. AdS/CFT computation of • Debate over its predicted magnitude • ST drag calculation • Drag coefficient for a massive quark moving through a strongly coupled SYM plasma at uniform T • not yet used to calculate observables: let’s do it! SQM 2007

  7. Looking for a Robust, Detectable Signal erad~as L2 log(pT/Mq)/pT • Use LHC’s large pT reach and identification of c and b to distinguish • RAA ~ (1-e(pT))n(pT), where pf = (1-e)pi (i.e. e = 1-pf/pi) • Asymptotic pQCD momentum loss: • String theory drag momentum loss: • Independent of pT and strongly dependent on Mq! • T2 dependence in exponent makes for a very sensitive probe • Expect: epQCD 0 vs. eAdSindep of pT!! • dRAA(pT)/dpT > 0 => pQCD; dRAA(pT)/dpT < 0 => ST eST~ 1 - Exp(-m L), m = pl1/2T2/2Mq S. Gubser, Phys.Rev.D74:126005 (2006); C. Herzog et al. JHEP 0607:013,2006 SQM 2007

  8. Model Inputs • AdS/CFT Drag: nontrivial mapping of QCD to SYM • “Obvious”: as = aSYM = const., TSYM = TQCD • D/2pT = 3 inspired: as = .05 • pQCD/Hydro inspired: as = .3 (D/2pT ~ 1) • “Alternative”: l = 5.5, TSYM = TQCD/31/4 • Start loss at thermalization time t0; end loss at Tc • WHDG convolved radiative and elastic energy loss • as = .3 • WHDG radiative energy loss (similar to ASW) • = 40, 100 • Use realistic, diffuse medium with Bjorken expansion • PHOBOS (dNg/dy = 1750); KLN model of CGC (dNg/dy = 2900) SQM 2007

  9. LHC c, b RAA pT Dependence WH, M. Gyulassy, nucl-th/0706.2336 • Large suppression leads to flattening • Use of realistic geometry and Bjorken expansion allows saturation below .2 • Significant rise in RAA(pT) for pQCD Rad+El • Naïve expectations born out in full numerical calculation: dRAA(pT)/dpT > 0 => pQCD; dRAA(pT)/dpT < 0 => ST • LHC Prediction Zoo: What a Mess! • Let’s go through step by step SQM 2007

  10. A Cleaner Signal • But what about the interplay between mass and momentum? • Take ratio of c to b RAA(pT) • pQCD: Mass effects die out with increasing pT • Ratio starts below 1, asymptotically approaches 1. Approach is slower for higher quenching • ST: drag independent of pT, inversely proportional to mass. Simple analytic approx. of uniform medium gives RcbpQCD(pT) ~ nbMc/ncMb ~ Mc/Mb ~ .27 • Ratio starts below 1; independent of pT RcbpQCD(pT) ~ 1 - asn(pT) L2 log(Mb/Mc) ( /pT) SQM 2007

  11. LHC RcAA(pT)/RbAA(pT) Prediction • Recall the Zoo: WH, M. Gyulassy, nucl-th/0706.2336 • Taking the ratio cancels most normalization differences seen previously • pQCD ratio asymptotically approaches 1, and more slowly so for increased quenching (until quenching saturates) • AdS/CFT ratio is flat and many times smaller than pQCD at only moderate pT WH, M. Gyulassy, nucl-th/0706.2336 SQM 2007

  12. But There’s a Catch Induced horizon Appearsif g > gcrit x5 “z” • Speed limit estimate for applicability of AdS/CFT drag computation • g < gcrit = (1 + 2Mq/l1/2 T)2 ~ 4Mq2/(l T2) • Limited by Mcharm ~ 1.2 GeV • Ambiguous T for QGP • smallest gcrit for largest T = T(t0, x=y=0): (O) • largest gcrit for smallest T = Tc: (|) D7 Probe Brane Q Trailing String “Brachistochrone” Black D3 Brane SQM 2007

  13. LHC RcAA(pT)/RbAA(pT) Prediction(with speed limits) WH, M. Gyulassy, nucl-th/0706.2336 • T(t0): (O), corrections unlikely for smaller momenta • Tc: (|), corrections likely for higher momenta SQM 2007

  14. Identified c and b at RHIC y=0 RHIC LHC • Index of power law production spectrum: • NOT slowly varying • No longer expect pQCD dRAA/dpT > 0 • Large n requires corrections to naïve Rcb ~ Mc/Mb SQM 2007

  15. RHIC c, b RAA pT Dependence • Large increase in n(pT) overcomes reduction in E-loss and makes pQCD dRAA/dpT < 0, as well WH, M. Gyulassy, to be published SQM 2007

  16. RHIC Rcb Ratio • Wider distribution of AdS/CFT curves due to large n: increased sensitivity to input parameters • Advantage of RHIC: lower T => higher AdS speed limits pQCD pQCD AdS/CFT AdS/CFT WH, M. Gyulassy, to be published SQM 2007

  17. Conclusions • Year 1 of LHC could show qualitative differences between energy loss mechanisms: • dRAA(pT)/dpT > 0 => pQCD; dRAA(pT)/dpT < 0 => ST • Ratio of charm to bottom RAA, Rcb, will be an important observable • Ratio is: flat in ST; approaches 1 from below in pQCD partonic E-loss • A measurement of this ratio NOT going to 1 will be a clear sign of new physics: pQCD predicts ~ 2-3 times increase in Rcb by 30 GeV—this can be observed in year 1 at LHC • Measurement at RHIC will be possible • AdS/CFT calculations applicable to higher momenta than at LHC due to lower medium temperature SQM 2007

  18. Conclusions (cont’d) • Additional c, b PID Goodies: • Adil Vitev in-medium fragmentation results in a much more rapid rise to 1 for RcAA/RbAA with the possibility of breaching 1 and asymptotically approaching 1 from above • Surface emission models (although already unlikely as per v2(pT) data) predict flat in pTc, b RAA, with a ratio of 1 • Moderately suppressed radiative only energy loss shows a dip in the ratio at low pT; convolved loss is monotonic. Caution: in this regime, approximations are violated • Mach cone may be due to radiated gluons: from pQCD the away-side dip should widen with increasing parton mass • Need for p+A control SQM 2007

  19. Backups SQM 2007

  20. LHC p Predictions • Our predictions show a significant increase in RAA as a function of pT • This rise is robust over the range of predicted dNg/dy for the LHC that we used • This should be compared to the flat in pT curves of AWS-based energy loss (next slide) • We wish to understand the origin of this difference WH, S. Wicks, M. Gyulassy, M. Djordjevic, in preparation SQM 2007

  21. Asymptopia at the LHC Asymptotic pocket formulae: DErad/E ~a3 Log(E/m2L)/E DEel/E ~a2 Log((E T)1/2/mg)/E WH, S. Wicks, M. Gyulassy, M. Djordjevic, in preparation SQM 2007

  22. n(pT) SQM 2007

  23. Langevin Model AdS/CFT here • Langevin equations (assumes gv ~ 1 to neglect radiative effects): • Relate drag coef. to diffusion coef.: • IIB Calculation: • Use of Langevin requires relaxation time be large compared to the inverse temperature: SQM 2007

  24. But There’s a Catch (II) • Limited experimental pT reach? ALICE Physics Performance Report, Vol. II SQM 2007

  25. Zoom In • Factor ~2-3 increase in ratio for pQCD • Possible distinction for Rad only vs. Rad+El at low-pT SQM 2007

  26. Regimes of Applicability • String Regime • Large Nc, constant ‘t Hooft coupling ( ) Small quantum corrections • Large ‘t Hooft coupling Small string vibration corrections • Only tractable case is both limits at once Classical supergravity (SUGRA) • RHIC/LHC Regime • Mapping QCD Nc to SYM is easy, but coupling is hard aS runs whereas aSYM does not: aSYM is something of an unknown constant Taking aSYM = aS = .3 (D/2pT ~ 1); D/2pT ~ 3 => aSYM ~ .05 SQM 2007

More Related