1 / 34

第十三届核结构研讨会暨第九次“核结构与量子力学”专题讨论会

第十三届核结构研讨会暨第九次“核结构与量子力学”专题讨论会. 夸克核心的混合星及致密星第三家族 特木尔巴根(南阳师范学院). 内蒙古 · 赤峰 2010 年 7 月. I Intruduction II Theory III Third Family of Compact Stars. Introduction. 1. History of Neutron Stars Study 2. Models for Neutron Star 3. Present situations for Neutron Star Investication

Download Presentation

第十三届核结构研讨会暨第九次“核结构与量子力学”专题讨论会

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 第十三届核结构研讨会暨第九次“核结构与量子力学”专题讨论会第十三届核结构研讨会暨第九次“核结构与量子力学”专题讨论会 夸克核心的混合星及致密星第三家族 特木尔巴根(南阳师范学院) 内蒙古·赤峰 2010年7月

  2. I Intruduction II Theory III Third Family of Compact Stars

  3. Introduction 1. History of Neutron Stars Study 2. Models for Neutron Star 3. Present situations for Neutron Star Investication 4. Motivation

  4. Intro.--History In 1932, Chadwick discoved neutron, and Landau predicted neutron stars immediately. • In 1934, BaadeandZwicky • In 1939, Tolman-Oppenheimer-Volkoff(TOV) equations. • In 1967, Hewish and Bell detected the first pulsar, and known as rotating neutron star.

  5. Intro.—Models for NS

  6. Intro.--TOV Equations Oppenheimer-Volkoff (OV)方程: r→距星体中心的距离; p(r)→距中心为r处的压强; (r)→能量密度; M(r)→半径为r的球体内的物质的质量。 由物态方程p=p(),给定星的中心密度, 由OV方程就可进行数 值求解。

  7. Intro.– Present Situations for NS Study 1. Neutron star with hyperons( or with kaon condensation): n, p, e, , , , , , k- (-) 2. Strange (quark) stars:u, d, s,e 3. Hybrid stars with quark core:n, p, e, ,, , , ,u, d, s 4. Third family of compact stars

  8. II Theories 1 Hadronic Phase: RMFT 2 Quark Phase: MIT Bag Model,NJL Model, M-D-D quark model, QMFM, EMQM, D-D-B in the framework of MIT bag Model 3 Mixed Phase: Gibbs criterion for phase equilibrium and global electric charge neutrality.

  9. Quark models 1 Effective mass bag model(EMBM) K.SchertlerNuclear,C.Greiner Physics A616(1997) 2 Nambu—Jona-Lasinio(NJL)Model Y.Nambu and G.Jona-Lasinio Phys.rev.122,124(1961) 3 Mass-density-dependent Quark model(MDDQM)— G.X.Peng Phys.Rev.C 62(025801) 4Density-dependent bag constant in the framewok of MIT bag model

  10. III Hybrid sars with quark core and third family of compact stars Hadron phase:TM2 parameter sets in the framework of RMFT TM1,TM2: Y. Sugahara, H. Toki, Relativistic mean-field theory or unstable nuclei with non-linear sigma and omega terms, Nucl. Phys. A579(1994)557-572

  11. Thermodynamical Potencial

  12. Fomulae for quark models Effective mass quark model Mass-density-denpendent quark model NJL model Quark condensation

  13. Energy density and pressure (EOS)

  14. EOS-If Bag Parameter is Density Dependent

  15. Formulas for mixed phase Gibbs criterion for phase equilibrium Chemical potencials satisfy

  16. Conservation of baryon number density, global electric charge neutrality and total energy density for mixed phase where

  17. Calculational results 1. GL85,TM2-D-D-B in the framework of bag model Submitted to EPJ A,Chinese Physics C Vol. 33 2. GL85-NJL Model HP& NP,2006,30( 10) 3. GL85-MDDQM HP& NP,2006,30( 12) 4. GL85,TM2- EMBM Commun. Theor. Phys. 45( 2006) 5. GL85—SEBM Eur. Phys. J. A Vol.38, 287-293 (2008)

  18. Density-dependent bag parameter

  19. Energy Density/Baryon Versus Total Baryon Number Density

  20. SQM EOS

  21. Hybrid star EOS

  22. Mass-radius relation of SS

  23. Mass-radius relation of hybrid stars- Third family of compact stars

  24. Possible Existence of TF TM2+EMBM g=0—1.0 TF

  25. Possible Existence of TF TM2+EMBM,g=0, B1/4=175-180MeV

  26. Conclusions

  27. 结论(续) 以TM2为核物质状态方程的混合星质量-半径曲线中,口袋常数B1/4在175MeV-178MeV(g=0)之间或耦合常数在g=0-1(口袋常数 B1/4=180MeV时)很小范围内存在TF。这些计算结果为观测具有相同质量而不同结构和半径的双星提供了理论依据。TF的存在亦是混合星内存在夸克相变的有力证据。 在有效质量口袋模型中,强耦合常数和口袋常数所起的作用在一定范围内相同.

  28. Thank your Attentions!

More Related