60 likes | 72 Views
This study explores the integrable optics concept in a 2-magnet lattice, with equal beta-functions, dispersion in the nonlinear magnet, and maximum vertical amplitude. It also considers the parameters in the IOTA OSC lattice and allowable errors in integrable optics.
E N D
Layout Dimensions: 15x10 m quadrupoles dipoles QXX quadrupole family Q01 Q02 Q03 Q04 integrable optics integrable optics Q05 Q06 Q07 Q08 Q09 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 optical stochastic cooling insert Gene Kafka IIT/Fermilab Comprehensive Exam
2-Magnet Lattice • Equal beta-functions, Qx=4.5+0.3×2, Qy=4.5+0.3×2 • Dispersion=0 in the Nonlinear Magnet • Maximum Vertical amplitude in the NM=11 mm • α=0.07 βx=βy, Q=0.5 βx=βy, Q=0.5 βx βy(m) D (m)
1-Magnet Lattice • Equal beta-functions, Qx=5.0+0.3×2, Qy=5.0+0.3×2 • Dispersion=0 in the Nonlinear Magnet • Maximum Vertical amplitude in the NM=11 mm • α=0.07 βx=βy, Q=0.5 βx βy(m) D (m)
OSC D (m) βx βy(m) s (m) • Qx=5.6, Qy=4.6 • εx = εy =11.5 nm • Maximum amplitude in the ELens=17 mm • α=-0.1 OSC Lattice
BPMs/Correctors • 8 X-correctors in main dipoles • 20 skew quads • 20 X-correctors • 20 Y-correctors • 20 electrostatic pickups • 8 synchrotron light based BPMs allowable errors in integrable optics: betas: 1% dispersion: 1 cm closed orbit: 50 um phase advance error: 0.001 A. Romanov