E N D
1. Monte Carlo Methodsfor Inference and Learning Guest Lecturer: Ryan Adams
CSC 2535
2. Overview Monte Carlo basics
Rejection and Importance sampling
Markov chain Monte Carlo
Metropolis-Hastings and Gibbs sampling
Slice sampling
Hamiltonian Monte Carlo
3. Computing Expectations We often like to use probabilistic models for data.
4. Computing Expectations
5. Computing Expectations
6. The Monte Carlo Principle
7. The Monte Carlo Principle
8. Properties of MC Estimators
9. Why Monte Carlo?
10. Why Monte Carlo?
11. Generating Fantasy Data
12. Sampling Basics
13. Inversion Sampling
14. Inversion Sampling
15. The Big Picture
16. Standard Random Variates
17. Rejection Sampling
18. Rejection Sampling
19. Rejection Sampling
20. Importance Sampling Recall that we’re really just after an expectation.
21. Importance Sampling
22. Importance Sampling
23. Scaling Up
24. Exploding Importance Weights
25. Scaling Up
26. Summary So Far
27. Revisiting Independence
28. Revisiting Independence
29. Markov chain Monte Carlo
30. Markov chain Monte Carlo
31. Markov chain Monte Carlo
32. A Discrete Transition Operator
33. Detailed Balance
34. Metropolis-Hastings
35. Metropolis-Hastings
36. Metropolis-Hastings
37. Effect of M-H Step Size
38. Effect of M-H Step Size
39. Effect of M-H Step Size
40. Gibbs Sampling
41. Gibbs Sampling
42. Gibbs Sampling
43. Summary So Far
44. An MCMC Cartoon
45. Slice Sampling
46. Slice Sampling
47. Slice Sampling
48. Slice Sampling
49. Slice Sampling
50. Slice Sampling
51. Multiple Dimensions
52. Multiple Dimensions
53. Auxiliary Variables
54. An MCMC Cartoon
55. Avoiding Random Walks
56. Hamiltonian Monte Carlo
57. Hamiltonian Monte Carlo
58. Hamiltonian Monte Carlo
59. Alternating HMC
60. Perturbative HMC
61. HMC Leapfrog Integration
62. Overall Summary