950 likes | 1.13k Views
Geometric Representations of Graphs. A survey of recent results and problems Jan Kratochvíl, Prague. Outline of the Talk. Intersection Graphs Recognition of the Classes Sizes of Representations Optimization Problems Interval Filament Graphs Representations of Planar Graphs.
E N D
Geometric Representationsof Graphs A survey of recent results and problems Jan Kratochvíl, Prague
Outline of the Talk • Intersection Graphs • Recognition of the Classes • Sizes of Representations • Optimization Problems • Interval Filament Graphs • Representations of Planar Graphs
Intersection Graphs {Mu, u VG} uv EG MuMv
Intervalgraphs INT Circular Arc graphs CA
Intervalgraphs INT Circular Arc graphs CA Circle graphs CIR
Polygon-Circle graphs PC Circular Arc graphs CA Circle graphs CIR
CONV SEG
CONV SEG STRING
STR CONV SEG PC CIR CA INT
2. Complexity of Recognition Upper bound Lower bound • P • NP NP-hard • PSPACE • Decidable • Unknown
Lower bound Upper bound STR STR CONV CONV SEG SEG PC PC CIR CIR CA CA INT INT
Lower bound Upper bound STR STR CONV CONV SEG SEG PC PC CIR CIR CA CA INT INT
Lower bound Upper bound STR STR CONV CONV SEG SEG PC PC CIR CIR CA CA INT INT Gilmore, Hoffman 1964
Lower bound Upper bound STR STR CONV CONV SEG SEG PC PC CIR CIR CA CA INT INT Gilmore, Hoffman 1964
Lower bound Upper bound STR STR CONV CONV SEG SEG PC PC CIR CIR CA CA Tucker 1970 INT INT Gilmore, Hoffman 1964
Lower bound Upper bound STR STR CONV CONV SEG SEG PC PC CIR CIR Bouchet 1985 CA CA Tucker 1970 INT INT Gilmore, Hoffman 1964
Lower bound Upper bound STR STR CONV CONV SEG SEG Koebe 1990 PC PC CIR CIR Bouchet 1985 CA CA Tucker 1970 INT INT Gilmore, Hoffman 1964
Lower bound Upper bound STR STR J.K. 1991 CONV CONV J.K. 1991 SEG J.K. 1991 SEG Koebe 1990 PC PC CIR CIR Bouchet 1985 CA CA Tucker 1970 INT INT Gilmore, Hoffman 1964
Lower bound Upper bound STR STR J.K. 1991 CONV J.K., Matoušek 1994 CONV J.K. 1991 K-M 1994 SEG J.K. 1991 SEG Koebe 1990 PC PC CIR CIR Bouchet 1985 CA CA Tucker 1970 INT INT Gilmore, Hoffman 1964
Lower bound Upper bound STR STR J.K. 1991 Pach, Tóth 2001; Schaefer, Štefankovič 2001 CONV J.K., Matoušek 1994 CONV J.K. 1991 K-M 1994 SEG J.K. 1991 SEG Koebe 1990 PC PC CIR CIR Bouchet 1985 CA CA Tucker 1970 INT INT Gilmore, Hoffman 1964
Lower bound Upper bound Schaefer, Sedgwick, Štefankovič 2002 STR STR J.K. 1991 CONV J.K., Matoušek 1994 CONV J.K. 1991 K-M 1994 SEG J.K. 1991 SEG Koebe 1990 PC PC CIR CIR Bouchet 1985 CA CA Tucker 1970 INT INT Gilmore, Hoffman 1964
Lower bound Upper bound Schaefer, Sedgwick, Štefankovič 2002 STR STR J.K. 1991 ? CONV J.K., Matoušek 1994 CONV J.K. 1991 ? SEG K-M 1994 J.K. 1991 SEG Koebe 1990 PC PC CIR CIR Bouchet 1985 CA CA Tucker 1970 INT INT Gilmore, Hoffman 1964
Lower bound Upper bound Schaefer, Sedgwick, Štefankovič 2002 STR STR J.K. 1991 ? CONV J.K., Matoušek 1994 CONV J.K. 1991 ? SEG K-M 1994 J.K. 1991 SEG ? PC PC CIR CIR Bouchet 1985 CA CA Tucker 1970 INT INT Gilmore, Hoffman 1964
Thm: Recognition of CONV graphs is in PSPACE • Reduction to solvability of polynomial inequalities in R: x1, x2, x3 … xn R s.t. P1(x1, x2, x3 … xn) > 0 P2(x1, x2, x3 … xn) > 0 … Pm(x1, x2, x3 … xn) > 0 ?
Mv Mw Mu Mz {Mu, u VG} uv EG MuMv
Mv Xuv Xuw Mw Mu Xuz Mz ChooseXuv MuMvfor every uv EG
Mv Xuv Xuw Mw Mu Xuz Mz ReplaceMuby Cu = conv(Xuv: vs.t. uv EG) Mu CuCv MuMv uv EG
Introduce variables xuv , yuv R s.t. Xuv = [xuv , yuv ] for uv EG
Introduce variables xuv , yuv R s.t. Xuv = [xuv , yuv ] for uv EG uv EG CuCv guaranteed by the choiceCu = conv(Xuv: vs.t. uv EG)
Introduce variables xuv , yuv R s.t. Xuv = [xuv , yuv ] for uv EG uv EG CuCv guaranteed by the choiceCu = conv(Xuv: vs.t. uv EG) uv EG CuCv = separating lines
Introduce variables xuv , yuv R s.t. Xuv = [xuv , yuv ] for uv EG uv EG CuCv guaranteed by the choiceCu = conv(Xuv: vs.t. uv EG) uw EG CuCw= separating lines Cw Cu auwx + buwy + cuw = 0
Introduce variables xuv , yuv R s.t. Xuv = [xuv , yuv ] for uv EG uv EG CuCv guaranteed by the choiceCu = conv(Xuv: vs.t. uv EG) uw EG CuCw= separating lines Cw Cu auwx + buwy + cuw = 0 Representation is described by inequalities (auwxuv + buwyuv + cuw) (auwxwz + buwywz + cuw) < 0 for all u,v,w,z s.t. uv, wz EG and uw EG
Lower bound Upper bound Schaefer, Sedgwick, Štefankovič 2002 STR STR J.K. 1991 ? CONV J.K., Matoušek 1994 CONV J.K. 1991 ? SEG K-M 1994 J.K. 1991 SEG ? PC PC CIR CIR Bouchet 1985 CA CA Tucker 1970 INT INT Gilmore, Hoffman 1964
Polygon-circle graphs representable by polygons of bounded size
Polygon-circle graphs representable by polygons of bounded size k-PC = Intersection graphs of convex k-gons inscribed to a circle 3-PC 2-PC = CIR 4-PC
Polygon-circle graphs representable by polygons of bounded size k-PC = Intersection graphs of convex k-gons inscribed to a circle 3-PC 2-PC = CIR 4-PC PC = k-PC k=2
PC 5-PC 4-PC 3-PC CIR = 2-PC
? PC 5-PC J.K., M. Pergel 2003 4-PC 3-PC CIR = 2-PC
Thm: For every k 3, recognition of k-PC graphs is NP-complete. • Proof for k = 3. • Reduction from 3-edge colorability of cubic graphs. • For cubic G = (V,E), construct H = (W,F) so that ’(G)= 3 iff H 3-PC
W = {u1,u2,u3,u4,u5,u6} {ae, e E} {bv, v V} F = {u1 u2,u2u3,u3u4,u4u5,u5u6 ,u6u1} {aebv, v e E} {bubv, u,v V} {bvui,v V, i = 2,4,6}
{u1,u2,u3,u4,u5,u6} {ae, e E}
{u1,u2,u3,u4,u5,u6} {ae, e E}
{u1,u2,u3,u4,u5,u6} {ae, e E} {bv, v V}
{u1,u2,u3,u4,u5,u6} {ae, e E} {bv, v V} ’(G)= 3 H 3-PC