1 / 43

Les binaires gamma Un nouveau type de sources compactes de très haute énergie dans la Galaxie ?

Les binaires gamma Un nouveau type de sources compactes de très haute énergie dans la Galaxie ?. Guillaume Dubus. Very High Energy. HESS. Sky > 100 GeV New arrays Cherenkov Telescopes Spectacular increase in # of sources!. VHE sky 2005. LS I+61 303. +14 sources in Gal. Plane. close to

nedra
Download Presentation

Les binaires gamma Un nouveau type de sources compactes de très haute énergie dans la Galaxie ?

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Les binaires gammaUn nouveau type de sources compactes de très haute énergie dans la Galaxie ? Guillaume Dubus GD - SF2A 2006

  2. Very High Energy HESS • Sky > 100 GeV • New arrays Cherenkov Telescopes • Spectacular increase in # of sources! GD - SF2A 2006

  3. VHE sky 2005 LS I+61 303 +14 sources in Gal. Plane close to 40 sources 4 3 GD - SF2A 2006

  4. Gamma-ray binaries: sources of VHE emission associated with binaries Aharonian et al. 2005, A&A, 442, 1 HESS MAGIC Aharonian et al., 2005, Science, 309, 746 Albert et al., 2006, Science GD - SF2A 2006

  5. Gamma-ray binaries: a new class of sources ? Aharonian et al. 2005, A&A, 442, 1 HESS MAGIC Aharonian et al., 2005, Science, 309, 746 Albert et al., 2006, Science GD - SF2A 2006

  6. All have massive companion + compact objectin eccentric orbit (4, 26, 1237 days) Copious source of seed photons in UV for IC Young pulsar in PSR B1259 Others: black hole or neutron star ? ESA Blondin mass transfer ? Blondin GD - SF2A 2006

  7. Gamma-ray binaries • Similarities • massive star (O, Be) e≠0 • TeV emission ~ 1033-34 erg/s • Low, ~ stable radio and X-ray emission (periodic radio outbursts in LS I+61 303 and PSR B1259-63) • Spectral energy distributions GD - SF2A 2006

  8. Similarities in SEDs GD - SF2A 2006

  9. Similarities in SEDs GD - SF2A 2006

  10. Similarities in SEDs GD - SF2A 2006

  11. Gamma-ray binaries Is there a common scenario ? Clue : PSR B1259-63 is a young 48 ms pulsar with dEspin/dt≈1036 erg/s Pulsar spindown powers a relativistic wind. VHE emission arises from containment of this relativistic wind (plerion): rotation-powered scenario GD - SF2A 2006

  12. In PSR B1259 there is no mass transfer: ram pressure of pulsar relativistic wind and stellar wind balance. • VHE emission due to particle acceleration at PW termination shock (small Crab  “binary plerion”) Maraschi & Treves 81, Tavani & Arons 97… GD - SF2A 2006

  13. Pulsar Wind Nebula emission • Proven mechanism (Crab) Proposed long ago for LS I+61 303 by Maraschi & Treves (1981) • Low steady emission • Radio pulse ? absorbed in strong stellar wind (tighter orbits in LS 5039, LS I+61 303) GD - SF2A 2006

  14. Apply to LS 5039 (LS I+61 303) • Take PSR B1259, put it in LS 5039 (LSI) • Pulsar spindown luminosity E (1036 erg/s) • ratio of wind magnetic/kinetic energy s(0.01) • mono-energetic e+e- in pulsar wind (gp=105) • Star wind parameters & orbit are constrained from optical data. GD - SF2A 2006

  15. Compact Pulsar Wind Nebula • Balance ram pressure of winds: shock close to pulsar • MHD shock conditions set B, flow speed, etc. • Acceleration to g-2 distribution gmax,min are set by jump conditions / radiative losses. • Inverse Compton (star photons) + synchrotron emission • Follow changes in flow conditions (B, v…) and particle distribution high E close to shock, low E further away stellar wind dM/dt=10-7 Msol/yr vw=2000 km/s GD - SF2A 2006

  16. MHD simulation of pulsar wind - ISM interaction ISM shocked pulsar wind material Pulsar wind Everything scales with RS Bucciantini et al. 2005 GD - SF2A 2006

  17. SED Pulsar wind parameters: 1036 erg/s, gw=105 and s=0.01 Break frequencies Emitted close to pulsar on timescale <10 ks Emitted far on timescale > Porb GD 2006, A&A in press (astro-ph/0605287) GD - SF2A 2006

  18. Evolution of particles in flow Electrons Emission GD - SF2A 2006

  19. There is a competition between three timescales Acceleration (gyrofrequency) Inverse Compton cooling on star photons (KleinNishina regime) Synchrotron cooling Model independent: pulsar wind only comes into play via B GD - SF2A 2006

  20. Qualitatively • High energy: synchrotron losses so steepening of electron distribution (flat X-rays, soft VHE spectra) • At lower energy, IC losses take over. Klein Nishina regime so hard VHE spectrum ~ injection spectrum. • Characteristic break frequencies See Moderski et al. 2005 GD - SF2A 2006

  21. Qualitatively • High energy: synchrotron losses so steepening of electron distribution (flat X-rays, soft VHE spectra) • At lower energy, IC losses take over. Klein Nishina regime so hard VHE spectrum ~ injection spectrum. • Characteristic break frequencies spectral change with orbit (simple pulsar model Bd) See Moderski et al. 2005 GD - SF2A 2006

  22. LS 5039: periastron Bd and d varies by ~2 only nsync varies (by ~2) most of the variability due to g-ray absorption GD - SF2A 2006

  23. LS 5039: apastron Bd and d varies by ~2 only nsync varies (by ~2) most of the variability due to g-ray absorption GD - SF2A 2006

  24. Gamma-ray opacity Gamma-rays of sufficient energy interact with ambient photon to create pairs g g  e+ e- Threshold Tight orbit + 1039 erg/s from star in UV = high opacity HESS! angle between photons LS 5039 orbit to scale GD - SF2A 2006

  25. Fraction of absorbed 30 GeV flux 10% 1% Observer at far right 50% 90% 99% Compact object orbit O6V star GD - SF2A 2006

  26. Fraction of absorbed 300 GeV flux GD - SF2A 2006

  27. Fraction of absorbed 3 TeV flux GD - SF2A 2006

  28. Fraction of absorbed 30 TeV flux GD - SF2A 2006

  29. LS 5039: Variation orbitale attendue 2004 data Max @ inferior conjunction Integrated flux GD, 2006, A&A, 451, 9 M. de Naurois à 14h GD - SF2A 2006

  30. TeV variation in LS I+61o303 Expected modulation due to absorption Albert et al. (MAGIC) 2006 • Max/min do not match + wide orbit wide so absorption moderate • Another reason for TeV flux variation in LS I+61 303: Be star companion: passage through dense equatorial wind will crush PWN (~like Earth magnetosphere during solar CME) Dubus 2006, A&A, 451,1 GD - SF2A 2006

  31. LS I+61o303 TeV modulation: passage through dense wind ? Apastron: diffuse polar wind, large shock distance, low B = VHE Periastron: dense equatorial wind, small shock distance, high B =noVHE 1036 erg/s, gw=105 and s=0.02 MAGIC periastron apastron Rs=3 (no absorption) GD 2006, A&A in press (astro-ph/0605287) GD - SF2A 2006

  32. Pulsar Wind Nebula emission • Proven mechanism (Crab) • Low steady emission (some variability), SEDs ok • Radio pulse absorbed in strong stellar wind • But LS 5039, LS I+61 303 have resolved radio emission ?! GD - SF2A 2006

  33. Massi et al. 2004 Paredes et al. 2000 Resolved radio emission • Resolved radio emission on scales of AU+ in LS 5039 and LS I+61 303 interpreted as microquasar jet. Confirmation of the long-held suspicion that small-scale analogues of AGN should also display VHE emission ?! GD - SF2A 2006

  34. Controversy: microquasar or pulsar ? Mirabel 2006 GD - SF2A 2006

  35. ~10 parsecs X-rays Radio Massi et al. 2004 Paredes et al. 2000 Resolved radio emission • Resolved radio emission on scales of AU+ in LS 5039 and LS I+61 303 interpreted as microquasar jet. • Butpulsars interacting w/ ISM have “comet” nebula the Mouse (Gaensler et al. 2004) GD - SF2A 2006

  36. ~10 parsecs X-rays Radio Aspect = cooling of advected particles in tail e.g. isolated pulsars + orbital change in geometry of interacting winds e.g. WR+O binary Dougherty et al., NRAO/AUI/NSF GD - SF2A 2006 http://vela.astro.ulg.ac.be/themes/stellar/massive/coll_e.html

  37. Large-scale emission: radio nebula Low E electrons last long; pulsar moves along its orbit so that flow direction changes with forb. LS 5039 i=60o scPorb denser “comet tail” GD - SF2A 2006

  38. Radio emission from comet tail VLBI observation Model 5 GHz emission Paredes et al. 2000 GD - SF2A 2006

  39. LS I+61o303 radio emission One-sided radio outflow model (5 GHz) only polar wind scPorb~100 AU with s =0.01 Longer Porb explains larger size vs LS 5039 GD - SF2A 2006

  40. PSR B1259-63 The spectral energy distribution, assuming same inputs as others (only orbit/star change) Resulting radio map close after periastron GD - SF2A 2006

  41. Conclusions: gamma-ray binaries as compact PWN • Interpretation as pulsar / stellar wind interaction explains similarities between VHE emitting binaries. • VHE emission occurs close to pulsar/star (gg absorption should modulate TeV flux in LS 5039). • Large scale emission can be explained by comet-like shocked material, radio morphology depends on orbit. GD - SF2A 2006

  42. Conclusions: gamma-ray binaries as compact PWN • Spectrum depends on magnetic field: pulsar wind physics on scales inaccessible before in a repeating environment. • Short-lived expected progenitors of HMXBs: about 30 in Galaxy Meurs & van den Heuvel 1989 Others in HESS galactic plane survey ? GD - SF2A 2006

  43. G359.95-0.04 SgrA* plerion ! ≈20” Chandra X-ray PWN are the new stars of the VHE sky GC source = plerion G359? Wang et al. 2006 Y. Gallant jeudi matin Established VHE emission from galactic compact objects • PlerionicSNR (e.g. Crab) • Binaries: compact plerions (*not* microquasars !) • Galactic Centre GD - SF2A 2006

More Related