100 likes | 311 Views
Trig 2.1: Graphs of Sine & Cosine Functions. Basic Sine & Cosine Curves: 1. Sine Curve (y = sin x) 2. Cosine Curve (y = cos x) Variations of Sine & Cosine Graphs: y = a sin b x y = a cos b x. C. Shifts: y = d + a sin ( b x – c ) y = a cos ( b x – c ) + d
E N D
Trig 2.1: Graphs of Sine & Cosine Functions • Basic Sine & Cosine Curves: • 1. Sine Curve (y = sin x) • 2. Cosine Curve (y = cos x) • Variations of Sine & Cosine Graphs: • y = a sin bx y = a cos bx
C. Shifts: • y = d + a sin (bx – c) y = acos (bx – c) + d • Vertical Shift = d • 2. Phase (horizontal) shift =
Trig 2.2: Graphing Sin/Cos Functions • Sketching sin/cos graphs: • 1. Name all variations • 2. Label key points • 3. Show 2 full periods
Trig 2.3: Graphs of Sec and Csc • Basic Graphs • 1. y = sec x • 2. y = csc x • Sketching y = a sec (bx – c) + d and y = d + a csc (bx – c) • 1. Sketch its reciprocal function to find asymptotes and min/max points
Trig 2.4: Graphs of Tan/Cot A. Basic Graphs: 1. y = tan x 2. y = cot x B. Graphing y = a tan (bx – c) and y = a cot (bx – c) 1. Note: amp is not defined; 2. To find asymptotes, solve: 3. Note: intercepts are halfway between asymptotes
Trig 2.5: Solving Right Triangles A. “Solving a Triangle” Finding all missing parts 1. Remember angles in a triangle = 1800 2. Use SOH-CAH-TOA* 3. Use Pythagorean Theorem* 4. Use calculator <DEG mode!!> *right triangles only
Case 1: Given one side and one acute angle b C A a c B
Case 2: Given two sides(use 2ndsin-1, cos-1, tan-1 to find angle!!) b C A a c B
Trigonometry Unit 2 Test • Grademaster #1-25 (Name, Date, Subject, Period, Test Copy #) • Do Not Write on Test! Show All Work on Scratch Paper! • Label BONUS QUESTIONS Clearly on Notebook Paper. (If you have time) • Find Something QUIET To Do When Finished!