690 likes | 1.06k Views
Homogeneous Gold Catalysis. Michelle Monnens Rogers Stahl Group 3/31/05. Robert and William Forrest and John S. MacArthur patent the process for extracting gold from ore using cyanide. Gold was known in central Europe. History of Gold. 4000 BC. 1350 BC. 1968 AD. 1887 AD. 1903 AD.
E N D
Homogeneous Gold Catalysis Michelle Monnens Rogers Stahl Group 3/31/05
Robert and William Forrest and John S. MacArthur patent the process for extracting gold from ore using cyanide Gold was known in central Europe History of Gold 4000 BC 1350 BC 1968 AD 1887 AD 1903 AD 1960 AD 1971 AD 1927 AD http://www.goldinstitute.org/history/
Why Gold? Precious Metal Prices / Gram. • Silver - $0.19 • Ruthenium - $1.96 • Iridium - $4.66 • Palladium - $6.17 • Osmium - $12.86 • Gold - $13.66 • Platinum - $27.62 • Rhenium - $39.38 • Rhodium - $50.15 • Gold complexes are air and water stable • Gold selectively binds to alkynes http://www.taxfreegold.co.uk/preciousmetalpricesusdollars.html
Early Catalysis Examples Schwemberger, W.; Gordon, W. Chem. Zentralbl. 1935, 106, 514. Gassman, P. G.; Mayer, G. R.; Williams, F. J. J. Am. Chem. Soc.1972, 94, 7741.
C-N Bond Formation Morita, N.; Krause, N. Org. Lett.2004, 6, 4121. Gompel, M.; Leost, M.; Bal De Kier Joffe, E.; Puricelli, L.; Franco, L. H.; Palermo, J.; Meijer, L.; Bioorg. Med. Chem. Lett. 2004, 1, 1703. Franco, L. H.; Joffe, Bal de Kier, E.; Puriceli, L.; Tatian, M.; Seldes, A. M.; Palermo, J. J. Nat. Prod. 1998, 61, 1130. Takadoi, M.; Katoh, T. Ishiwata, A.; Terashima, S. Tetrahedron2002, 58, 9903.
Intermolecular Hydroamination of Alkynes • Internal alkynes are less reactive. • Aliphatic amines do not react. Mizushima, E.; Hayashi, T.; Tanaka, M. Org. Lett. 2003, 5, 3349.
Synthesis of 2,3,4,5-Tetrahydropyridines from 5-Alkynylamines Fukuda, Y.; Utimoto, K. Synthesis, 1991, 975.
Proposed Mechanism for Cyclization of 5-Alkynylamines Fukuda, Y.; Utimoto, K. Synthesis, 1991, 975.
Synthesis of Indoles • Au(I), Pt(IV), Pd(II) and Cu(II) were less effective catalysts. • Yields were maintained in solvent mixtures up to 50% water. Arcadi, A.; Bianchi, G.; Marinelli, F. Synthesis, 2004, 610.
Proposed Mechanism of Tandem Cyclization / Conjugate Addition Alfonsi, M.; Arcadi, A.; Aschi, M.; Bianchi, G.; Marinelli, F. J. Org. Chem. 2005, 70, 2265.
2-Alkynylaniline Cyclization Coupled with Conjugate Addition Alfonsi, M.; Arcadi, A.; Aschi, M.; Bianchi, G.; Marinelli, F. J. Org. Chem. 2005, 70, 2265.
Cycloisomerization of -Aminoallenes to 3-Pyrrolines Morita, N.; Krause, N. Org. Lett.2004, 6, 4121.
Proposed Mechanism for -Aminoallene Cyclization Morita, N.; Krause, N. Org. Lett.2004, 6, 4121.
C-O Bond Formation Krause, N.; Laux, M.; Hoffmann-Roder, A. Tetrahedron Lett.2000, 9613. Turchi, I. J.; Dewar, M. J. S. Chem. Rev.1975, 75, 389. Liu, Y.; Bae, B. H.; Alam, N.; Hong, J.; Sim, C. J.; Lee, C.; Im, K. S.; Jung, J. H. J. Nat. Prod.2001, 64, 1301. Fisch, K. M.; Bohm, V.; Wright, A. D.; Konig, G. M. J. Nat. Prod. 2003, 66, 968.
Alkynyl Epoxide Rearrangement to Furans • Base, Ru and Mo catalyzed conditions suffer substrate limitations. • Hg(II) catalysis presents environmental issues. Hashmi, A. S. K.; Sinah, P. Adv. Synth. Catal.2004, 346, 432.
Proposed Mechanism of Alkynyl Epoxide Rearrangement to Furans Hashmi, A. S. K.; Sinah, P. Adv. Synth. Catal.2004, 346, 432.
Cyclization to Furans Yao, T.; Whang, X.; Larock, R. J. Am. Chem. Soc.2004, 126, 11164.
Proposed Rearrangement Mechanism for 2-(Alkynyl)-2-alken-1-one • AuCl3 fails to catalyze the 1,4-addition of methanol to methyl vinyl ketone or 2-cyclohexenone under the reaction conditions. Yao, T.; Whang, X.; Larock, R. J. Am. Chem. Soc.2004, 126, 11164.
Cyclization of Allenyl Ketones to Furans • Pd(II) catalysis leads to different products. • Ag(I) leads to lower yields. Hashmi, A. S. K.; Schwarz, L.; Choi, J.; Frost, T. J. Angew. Chem. Int. Ed.2000, 39, 2285.
Allenyl Ketone Rearrangement to Furans Coupled with Michael Addition Hashmi, A. S. K.; Schwarz, L.; Choi, J.; Frost, T. J. Angew. Chem. Int. Ed. 2000, 39, 2285.
-Hydroxyallene Cyclization to 2,5-Dihydrofurans • Yield increases from 67 to 94% with AuCl3. • AuCl3 increases the rate of the reaction compared with HCl gas in CHCl3. Hoffmann-Roder, A.; Krause, N. Org. Lett.2001, 3, 2537. Krause, N.; Hoffmann-Roder, A.; Canisius, J. Synthesis 2002, 1759. Krause, N.; Laux, M.; Hoffmann-Roder, A. Tetrahedron Lett.2000, 41, 9613.
Synthesis of Oxazoles from N-Propargylcarboxamides • No conversion is observed with internal alkynes. • H2SO4 and Hg(OAc) cyclization require elevated temperatures. Hashmi, A. S. K.; Weyrauch, J. P.; Frey, W.; Bats, J. W. Org. Lett.2004, 6, 4391.
Reaction Profile of Oxazole Formation 12 hours for complete conversion of 1b to 2b Hashmi, A. S. K.; Weyrauch, J. P.; Frey, W.; Bats, J. W. Org. Lett.2004, 6, 4391.
NMR Analysis of Reaction Intermediate • Cyclization and proto-demetalation are stereospecific. Proton NMR Hashmi, A. S. K.; Weyrauch, J. P.; Frey, W.; Bats, J. W. Org. Lett.2004, 6, 4391.
C-C Bond Formation Kdebati, M. B.; Schmitz, F. J. J. Org. Chem.1985, 50, 5637. Selover, S. J.; Crews, P. J. Org. Chem. 1980, 45, 69. Ali, s.; Singh, P.; Thomson, R. H. J. Chem. Soc. Perkin Trans. 11980, 257. Rees, J. C.; Whittaker, D. J. Chem. Soc. Perkin Trans. 21981, 953. Tilford, C. H.; Hudak, W. J.; Lewis, R. E. J. Med. Chem.1971, 14, 328. Tennant, S.; Richards, R. W. Tetrahedron1997, 53, 15101.
Isomerization of 1,5-Enynes to Bicyclo[3.1.0]hexenes • Only a trace yield in the presence of silver alone. Luzuing, M. R.; Markham, J. P.; Toste, F. D. J. Am. Chem. Soc. 2004, 126, 10858.
Cyclization of Enynes in Methanol • Au(III) and Au(I) are effective catalysts for the cyclization. • A series of chiral AuI complexes gave high yields but low ee’s. Nevado, C.; Cardenas, D. J.; Echavarren, A. M. Chem. Eur. J.2003, 9, 2627. D. J. Echavarren. A. M., et al. Angew. Chem. Int. Ed.2004, 43, 2402. Munoz, M. P.; Adrio, J.; Carrentro, J. C.; Echavarren, A. M. Organometallics2005, 46, 1293.
Conia-Ene Reaction of -Ketoesters with Alkynes • Ag(OTf) alone does not catalyze the reactions. Kennedy-Smith, J. J.; Staben, S. T.; Toste, F. D. J. Am. Chem. Soc.2004, 126, 4526.
Mechanistic Studies on Conia-Ene Reaction • Deuterium labeling experiments support enol addition to a gold-alkene complex. Kennedy-Smith, J. J.; Staben, S. T.; Toste, F. D. J. Am. Chem. Soc.2004, 126, 4526.
Carbocyclization of Internal Alkynes Staben, S. T.; Kennedy-Smith, J. J.; Toste, F. D. Angew. Chem. Int. Ed.2004, 43, 5350.
Addition of -Diketones to Olefins Yao, X.; Li. C. J. Am. Chem. Soc.2004, 126, 6884. Nguyen, R.; Yao, X.; Bohle, S.; Li. C. Org. Lett.2005, 7, 673.
Benzannulation: Synthesis of Naphthyl Ketone Derivatives • Electron withdrawing groups on the alkyne favor product 4. Asao, N.; Takahashi, K.; Lee, S.; Kasahara, T.; Yanamoto, Y. J. Am. Chem. Soc.2002, 124, 12650. Asao, N.; Nogami, T.; Lee, S.; Yamamoto, Y. J. Am. Chem. Soc. 2003, 125, 10921.
Proposed Mechanism for Benzannulation Asao, N.; Takahashi, K.; Lee, S.; Kasahara, T.; Yanamoto, Y. J. Am. Chem. Soc.2002, 124, 12650. Asao, N.; Nogami, T.; Lee, S.; Yamamoto, Y. J. Am. Chem. Soc. 2003, 125, 10921.
Synthesis of Functionalized Pyridines Abbiati, G.; Arcadi, A.; Bianchi, G.; Di Giuseppe, S.; Marinelli, F.; Rossi, E. J. Org. Chem. 2003, 68, 6959.
Proposed Mechanism for Pyridine Synthesis Abbiati, G.; Arcadi, A.; Bianchi, G.; Di Giuseppe, S.; Marinelli, F.; Rossi, E. J. Org. Chem. 2003, 68, 6959.
Synthesis of Quinolines Acradi, A.; Chiarini, M.; Di Giuseppe, S.; Marinelli, F. Synlett. 2003, 203.
Synthesis of Pyrroles Acradi, A.; Di Giuseppe, S.; Marinelli, F.; Rossi, E. Adv. Synth. Catal.2001, 343, 443. Acradi, A.; Di Giuseppe, S.; Marinelli, F.; Rossi, E. Tetrahedron Asymm.2001, 2715.
Propargyl Claisen Rearrangement Sherry, B. J.; Toste, F. D. J. Am. Chem. Soc.2004, 126, 15978.
Chiral Propargyl Claisen Rearrangement and Proposed Mechanism Sherry, B. J.; Toste, F. D. J. Am. Chem. Soc.2004, 126, 15978.
Phenol Synthesis from Furans Hashmi, A. S. K.; Frost, T.; Bats, J. W. J. Am. Chem. Soc. 2000, 122, 11553. Hashmi, A. S. K.; Frost, T.; Bats, J. W. Catalysis Today2002, 72, 19.
Ligand Development for Furan Rearrangement Catalyst 3 Hashmi, A. S. K.; Weyrauch, J. P.; Rudolph, M.; Kurpejovic, E. Angew. Chem. Int. Ed.2004, 43, 6454.
Comparison with Other Catalysts Hashmi, A. S. K.; Weyrauch, J. P.; Frey, W.; Bats, J. W. Org. Lett.2004, 6, 4391.
Total Synthesis Application of the Furan Cyclization to Phenols Hashmi, A. S. K.; Ding, L.; Bats, J. W.; Fischer, P.; Frey, W. Chem. Eur. J.2003, 9, 4339.
Hayashi-Ito Aldol with Isocyanoacetates and Aldehydes • First example of a catalytic asymmetric aldol. Ito, Y.; Sawamura, M.; Hayashi, T. J. Am. Chem. Soc.1986, 108, 6405.
Asymmetric Aldol - Stereochemical Control and Conversion to the Amino Acid • Ligand stereochemistry controls product formation. Ito, Y.; Sayamura, M.; Hayashi, T. Tetrahedron Lett. 1998, 29, 239.
Importance of Central Chirality Pastor, S.D.; Togni, A. J. Am. Chem. Soc.1989, 111, 2333.
Proposed Transition State Sawamura, M.; Ito, Y. Tetrahedron Lett.1990, 31, 2723.
NOE Evidence for Interaction with Distant Dimethyl Amine • 31P NMR spectrum indicated a tridentate gold complex as the major species. • 1H NMR spectra of the silver and gold complexes are analogous. Sawamura, M.; and Ito, Y. Tetrahedron Lett.1990, 31, 2723.
Crystal Structure of Ferrocenylphosphine Ligand Bound to Gold • Crystal structure shows expected linear Au(I) binding mode. • Each phosphorus atom is binding a separate gold atom. Togni, A.; Pastor, S.D.; Rihs, G. J. Organomet. Chem. 1990, 381, C21.
Ligand Modification Effects on Enantiomeric Excess Togni, A.; Pastor, S.D. J. Org. Chem.1990, 55, 1649.