1 / 18

Abstraction in Systems Biology

Biologie du système de signalisation cellulaire induit par la FSH ASC 2006, projet AgroBi INRIA Rocquencourt Thème “Systèmes symboliques” Projet “Programmation par contraintes” François Fages http://contraintes.inria.fr/. Abstraction in Systems Biology.

nell
Download Presentation

Abstraction in Systems Biology

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Biologie du système de signalisation cellulaire induit par la FSH ASC 2006, projet AgroBiINRIA RocquencourtThème “Systèmes symboliques”Projet “Programmation par contraintes” François Fageshttp://contraintes.inria.fr/

  2. Abstraction in Systems Biology • Models are built in Systems Biology with two contradictory perspectives :

  3. Abstraction in Systems Biology • Models are built in Systems Biology with two contradictory perspectives : • Models for representing knowledge : the more concrete the better

  4. Abstraction in Systems Biology • Models are built in Systems Biology with two contradictory perspectives : • Models for representing knowledge : the more concrete the better • Models for making predictions : the more abstract the better

  5. Abstraction in Systems Biology • Models are built in Systems Biology with two contradictory perspectives : • Models for representing knowledge : the more concrete the better • Models for making predictions : the more abstract the better • These perspectives can be reconciled by organizing models into hierarchies of abstraction. • To understand a system is not to know everything about it but to know abstraction levels that are sufficient to answering questions about it.

  6. A Logical Paradigm for Systems Biology • Biochemical model = Transition system • Biological property = Temporal Logic formula • Biological validation = Model-checking

  7. A Logical Paradigm for Systems Biology • Biochemical model = Transition system • Biological property = Temporal Logic formula • Biological validation = Model-checking • Several abstraction levels : • Boolean : presence/absence of molecules (non-deterministic TS); • Discrete : levels of concentrations (non-deterministic TS); • Differential : concentrations, reaction and transport kinetics (ODE’s) ; • Stochastic : number of molecules (continuous time Markov’s chain).

  8. A Logical Paradigm for Systems Biology • Biochemical model = Transition system • Biological property = Temporal Logic formula • Biological validation = Model-checking • Several abstraction levels : • Boolean : presence/absence of molecules (non-deterministic TS); • Discrete : levels of concentrations (non-deterministic TS); • Differential : concentrations, reaction and transport kinetics (ODE’s) ; • Stochastic : number of molecules (continuous time Markov’s chain). • Biochemical Abstract Machine BIOCHAM : modelling environment • for making in silico experiments http://contraintes.inria.fr/BIOCHAM

  9. Mammalian Cell Cycle Control Map [Kohn 99]

  10. Transcription of Kohn’s Map in BIOCHAM • _ =[ E2F13-DP12-gE2 ]=> cycA. • ... • cycB =[ APC~{p1} ]=>_. • cdk1~{p1,p2,p3} + cycA => cdk1~{p1,p2,p3}-cycA. • cdk1~{p1,p2,p3} + cycB => cdk1~{p1,p2,p3}-cycB. • ... • cdk1~{p1,p3}-cycA =[ Wee1 ]=> cdk1~{p1,p2,p3}-cycA. • cdk1~{p1,p3}-cycB =[ Wee1 ]=> cdk1~{p1,p2,p3}-cycB. • cdk1~{p2,p3}-cycA =[ Myt1 ]=> cdk1~{p1,p2,p3}-cycA. • cdk1~{p2,p3}-cycB =[ Myt1 ]=> cdk1~{p1,p2,p3}-cycB. • ... • cdk1~{p1,p2,p3} =[ cdc25C~{p1,p2} ]=> cdk1~{p1,p3}. • cdk1~{p1,p2,p3}-cycA =[ cdc25C~{p1,p2} ]=> cdk1~{p1,p3}-cycA. • cdk1~{p1,p2,p3}-cycB =[ cdc25C~{p1,p2} ]=> cdk1~{p1,p3}-cycB. 165 proteins and genes, 500 variables, 800 rules [Chabrier et al. 04]

  11. Biological Properties Formalized in Temporal Logic • Properties of wild-life or mutated organisms • reachable(Cdc2~{p1}) • reachable(Cyclin) • reachable(Cyclin~{p1}) • reachable(Cdc2-Cyclin~{p1}) • reachable(Cdc2~{p1}-Cyclin~{p1}) • oscil(Cdc2) • oscil(Cdc2~{p1}) • oscil(Cdc2~{p1}-Cyclin~{p1}) • oscil(Cyclin) • checkpoint(Cdc2~{p1}-Cyclin~{p1},Cdc2-Cyclin~{p1})) • … • Automatically checked / generated by model-checking techniques

  12. Cell Cycle Model-Checking • biocham: check_reachable(cdk46~{p1,p2}-cycD~{p1}). • true • biocham: check_checkpoint(cdc25C~{p1,p2}, cdk1~{p1,p3}-cycB). • true • biocham: check_checkpoint(Wee1, cdk1~{p1,p2,p3}-cycB))))). • false • biocham: why. • rule_114 cycB-cdk1~{p1,p2,p3}=[cdc25C~{p1}]=>cycB-cdk1~{p2,p3}. • cycB-cdk1~{p2,p3} is present • cycB-cdk1~{p1,p2,p3} is absent • rule_74 cycB-cdk1~{p2,p3}=[Myt1]=>cycB-cdk1~{p1,p2,p3}. • cycB-cdk1~{p2,p3} is absent • cycB-cdk1~{p1,p2,p3} is present

  13. Searching Parameters from Temporal Properties • biocham: learn_parameter([k3,k4],[(0,200),(0,200)],20, • oscil(Cdc2-Cyclin~{p1},3),150).

  14. Searching Parameters from Temporal Properties • biocham: learn_parameter([k3,k4],[(0,200),(0,200)],20, • oscil(Cdc2-Cyclin~{p1},3),150). • First values found : • parameter(k3,10). • parameter(k4,70).

  15. Searching Parameters from Temporal Properties • biocham: learn_parameter([k3,k4],[(0,200),(0,200)],20, • oscil(Cdc2-Cyclin~{p1},3) & F([Cdc2-Cyclin~{p1}]>0.15), 150). • First values found : • parameter(k3,10). • parameter(k4,120).

  16. Searching Parameters from Temporal Properties • biocham: learn_parameter([k3,k4],[(0,200),(0,200)],20, • period(Cdc2-Cyclin~{p1},35), 150). • First values found: • parameter(k3,10). • parameter(k4,280).

  17. Modelling Methodology in BIOCHAM • Biochemical model = Transition system • Biological property = Temporal Logic formula • Biological validation = Model-checking • Semi-qualitative semi-quantitative temporal properties • Automatic parameter search and rule inference from temporal properties • Model: BIOCHAM Biological Properties: • - Boolean - simulation - Temporal Logic • - Differential - query evaluation - TL with constraints • - Stochastic - reaction rule inference • (SBML) - parameter search

  18. Other Collaborations • EU STREP Tempo INSERM Villejuif, F. Lévi, CNRS Roscoff L. Meyer, CNRS Nice F. Delaunay, CINBO Italy, Physiomics, Helios, … • Models of cell and circadian cycles and cancer chronotherapeutics • ARC MOCA, INRIA SYMBIOSE, CNRS Paris 7, Marseille, D. Thieffry • Modularity, compositionality and abstraction in regulatory networks • EU NoE REWERSE: Reasoning on the web with rules and semantics • F. Bry, Münich, R. Backofen Freiburg, M. Schroeder Dresden, … • Connecting BIOCHAM to gene and protein ontologies • EU STREP APRIL 2: Applications of probabilistic inductive logic, L. de Raedt, Freiburg, M. Sternberg, S. Muggleton, Imperial College London • Learning in a probabilistic logic setting

More Related