640 likes | 820 Views
Winners and Losers: Ecological and Biogeochemical Changes in a Future Ocean Stephanie Dutkiewicz Massachusetts Institute of Technology Program in Atmospheres, Oceans and Climate Jeff Scott, Mick Follows Ilana Berman-Frank, Orly Levitan , Jeff Morris. OUTLINE.
E N D
Winners and Losers: Ecological and Biogeochemical Changes in a Future Ocean Stephanie Dutkiewicz Massachusetts Institute of Technology Program in Atmospheres, Oceans and Climate Jeff Scott, Mick Follows Ilana Berman-Frank, OrlyLevitan, Jeff Morris
OUTLINE Marine biogeochemistry/ecology Model Frameworks: - Darwin Project - IGSM 3) Winners and Losers in future ocean: - Ecological Impacts - Biogeochemical Impacts 4) Future Directions Stephanie Dutkiewicz http://ocean.mit.edu/~stephd
INTRODUCTION Stephanie Dutkiewicz http://ocean.mit.edu/~stephd
INTRODUCTION fish zooplankton predators phytoplankton top predators Stephanie Dutkiewicz http://ocean.mit.edu/~stephd
INTRODUCTION CO2 sunlight atmosphere ocean CO2 phytoplankton rest of food chain nutrients carbon stored in deep ocean Stephanie Dutkiewicz http://ocean.mit.edu/~stephd
INTRODUCTION Dissolved Inorganic Carbon (mol C/m3) current ocean depth (m) dead ocean latitude Computer Simulations • A “dead” ocean would release almost 200ppmv of • CO2 to atmosphere Stephanie Dutkiewicz http://ocean.mit.edu/~stephd
INTRODUCTION • DIVERSITY OF PHYTOPLANKTON: • differences in: • size, nutrients, light, growth rates, protection • large phytoplankton: • need high nutrient • environment; • support longer foodwebs; • export more carbon • small phytoplankton: • adapted to lower nutrient • environment; • support smaller foodweb; • export less carbon Stephanie Dutkiewicz http://ocean.mit.edu/~stephd
INTRODUCTION Phytoplankton studies: genomics molecular lab studies field surveys satellite Stephanie Dutkiewicz http://ocean.mit.edu/~stephd
INTRODUCTION SEAWiFS derived Chlorophyll Stephanie Dutkiewicz http://ocean.mit.edu/~stephd
INTRODUCTION surface nutrient depth (m) nitrate (uM) distribution of nutrient with depth latitude Stephanie Dutkiewicz http://ocean.mit.edu/~stephd
INTRODUCTION MODIS derived Chlorophyll Stephanie Dutkiewicz http://ocean.mit.edu/~stephd
INTRODUCTION Phytoplankton studies: genomics molecular lab studies field surveys computer models satellite theory Stephanie Dutkiewicz http://ocean.mit.edu/~stephd
OUTLINE Marine biogeochemistry/ecology Model Frameworks: - Darwin Project - IGSM 3) Winners and Losers in future ocean: - Ecological Impacts - Biogeochemical Impacts 4) Future Directions Stephanie Dutkiewicz http://ocean.mit.edu/~stephd
MODEL FRAMEWORKS: DARWIN PROJECT Stephanie Dutkiewicz http://ocean.mit.edu/~stephd
MODEL FRAMEWORKS: DARWIN PROJECT light generic zooplankton (‘grazer’) generic phytoplankton nutrient growth rates grazing rates detritus marine ecosystem models: follow matter from inorganic form through living biota some sinks out to depths Stephanie Dutkiewicz http://ocean.mit.edu/~stephd
MODEL FRAMEWORKS: DARWIN PROJECT Darwin Project Model (Follows et al., Science 2007) light many (100+) phytoplankton zooplankton nutrients PO4 NO3 Fe Si grazing rates randomly assigned growth rates detritus some sinks out to depths Stephanie Dutkiewicz http://ocean.mit.edu/~stephd
MODEL FRAMEWORKS: DARWIN PROJECT Darwin Project Model (Follows et al., Science 2007) light environment 1 phytoplankton nutrients zooplankton PO4 NO3 Fe Si grazing rates randomly assigned growth rates detritus some sinks out to depths Stephanie Dutkiewicz http://ocean.mit.edu/~stephd
MODEL FRAMEWORKS: DARWIN PROJECT Darwin Project Model (Follows et al., Science 2007) light environment 2 phytoplankton zooplankton nutrients PO4 NO3 Fe Si grazing rates randomly assigned growth rates detritus some sinks out to depths Stephanie Dutkiewicz http://ocean.mit.edu/~stephd
SeaWiFS ECCO2 + Darwin: Simulation credit: Oliver Jahn (MIT), DimitrisMenemelis (JPL), S Dutkiewicz (MIT) Chris Hill (MIT), Mick Follows (MIT) Stephanie Dutkiewicz http://ocean.mit.edu/~stephd
MODEL FRAMEWORKS: DARWIN PROJECT Studies include: - phytoplankton community structure (who lives where and why) - strategies for survival (traits and trade offs) - biodiversity - impacts of climate change Stephanie Dutkiewicz http://ocean.mit.edu/~stephd
OUTLINE Marine biogeochemistry/ecology Model Frameworks: - Darwin Project - IGSM 3) Winners and Losers in future ocean: - Ecological Impacts - Biogeochemical Impacts 4) Future Directions Stephanie Dutkiewicz http://ocean.mit.edu/~stephd
MODEL FRAMEWORKS: IGSM • Integrated Global Systems Model: • Economics model (EPPA) linked • To Earth System Model of • Intermediate Complexity: Stephanie Dutkiewicz http://ocean.mit.edu/~stephd
MODEL FRAMEWORKS: IGSM • Integrated Global Systems Model: • Economics model (EPPA) linked • To Earth System Model of • Intermediate Complexity: • Studies include: • - uncertainties in: • emission scenarios • climate sensitivity • aerosol forcing • ocean heat uptake • ocean/land carbon uptake • impact of climate change on: • vegetation • ocean carbon cycle • marine ecosystems Stephanie Dutkiewicz http://ocean.mit.edu/~stephd
OUTLINE Marine biogeochemistry/ecology Model Frameworks: - Darwin Project - IGSM 3) Winners and Losers in future ocean: - Ecological Impacts - Biogeochemical Impacts 4) Future Directions Stephanie Dutkiewicz http://ocean.mit.edu/~stephd
WINNERS AND LOSERS: Model Setup NOTE: no feedback from Darwin to IGSM (i.e. one way coupling) coarse resolution 3D ocean model (2x2.5deg) Stephanie Dutkiewicz http://ocean.mit.edu/~stephd
WINNERS AND LOSERS: Model Setup 100 plankton with different traits: size, temperature, light, nutrients, palatibility log10 (biomass) Initial Conditions Stephanie Dutkiewicz http://ocean.mit.edu/~stephd
WINNERS AND LOSERS: Model Setup 100 plankton with different traits: size, temperature, light, nutrients, palatibility log10 (biomass) Annual Biomass after 100 years of “current day” simulation Stephanie Dutkiewicz http://ocean.mit.edu/~stephd
WINNERS AND LOSERS: Model Setup • “business of usual emissions scenario” • By 2100: • pCO2atmos 1100ppm • Tair +5C • SST +3C year Dutkiewicz et al, GBC, 2013 Stephanie Dutkiewicz http://ocean.mit.edu/~stephd
WINNERS AND LOSERS: Changes to physical ocean Change (2100-2000) Sea Surface Temperature (oC) Seaice cover (fractional area) Stratification (dρ/dz) Meridional Overturning Circulation (Sv=106m3/s) Dutkiewicz et al, GBC, 2013 Stephanie Dutkiewicz http://ocean.mit.edu/~stephd
WINNERS AND LOSERS: Changes to physical ocean Change (2100-2000) Meridional Overturning Circulation Stratification Consequences • Decreased supply of nutrient to surface sunlight layers • Potentially increased light in some areas surface nutrients distribution of nutrients with depth depth (m) latitude Stephanie Dutkiewicz http://ocean.mit.edu/~stephd nitrate (uM)
ECOLOGICAL CONSEQUENCES: 2000 Phytoplankton growth factor temperature phytoplankton biomass (log gC/m3) Dutkiewicz et al, GBC, 2013 Stephanie Dutkiewicz http://ocean.mit.edu/~stephd
ECOLOGICAL CONSEQUENCES: 2100 - 2000 Phytoplankton growth factor temperature biomass change phytoplankton biomass (log gC/m3) Dutkiewicz et al, GBC, 2013 Stephanie Dutkiewicz http://ocean.mit.edu/~stephd
ECOLOGICAL CONSEQUENCES: Global % change in fraction of biomass in small phytoplankton both fraction small reduced nutrients only warming only • lower nutrients favors small recycling plankton: Stephanie Dutkiewicz http://ocean.mit.edu/~stephd
ECOLOGICAL CONSEQUENCES: year Plankton rank abundance for 2000 Stephanie Dutkiewicz http://ocean.mit.edu/~stephd
ECOLOGICAL CONSEQUENCES: warming+reduced nutrients: - winners and losers - greater fraction of smaller phytoplankton - 50% change in community structure by 2100 Stephanie Dutkiewicz http://ocean.mit.edu/~stephd
ECOLOGICAL CONSEQUENCES: TODAY 2100 Stephanie Dutkiewicz http://ocean.mit.edu/~stephd
ECOLOGICAL CONSEQUENCES: warming+reduced nutrients: - winners and losers - greater fraction of smaller phytoplankton - 50% change in community structure by 2100 • Sensitivity experiments • Just temperature changes • Just circulation/mixing changes Stephanie Dutkiewicz http://ocean.mit.edu/~stephd
ECOLOGICAL CONSEQUENCES: warming+reduced nutrients: - winners and losers - greater fraction of smaller phytoplankton - 50% change in community structure by 2100 both %fraction small change reduced nutrients only warming only reduced nutrients only warming only both Stephanie Dutkiewicz http://ocean.mit.edu/~stephd
BIOGEOCHEMICAL CONSEQUENCES: • primary production • export of carbon to deep ocean Dutkiewicz et al, GBC, 2013 Stephanie Dutkiewicz http://ocean.mit.edu/~stephd
BIOGEOCHEMICAL CONSEQUENCES: % change in global primary production % change PP year Other studies have suggested both : Increase (e.g. Sarmiento et al, 2004; Schmittner et al, 2008) Decrease (e.g. Bopp et al, 2001, 2005; Steinacher et al 2008) Dutkiewicz et al, GBC, 2013 Stephanie Dutkiewicz http://ocean.mit.edu/~stephd
WINNERS AND LOSERS: Changes to physical ocean Change (2100-2000) Sea Surface Temperature (oC) Phytoplankton Growth Rate Consequences Bissinger et al, L+O, 2008 Stephanie Dutkiewicz http://ocean.mit.edu/~stephd
BIOGEOCHEMICAL CONSEQUENCES: % change in global primary production warming only both % change PP reduced nutrients only year • higher growth rates lead to increased production • (result of higher temperatures) • lower nutrient supply leads to decreased production • (result of increased stratification and changes to • circulation) Dutkiewicz et al, GBC, 2013 Stephanie Dutkiewicz http://ocean.mit.edu/~stephd
BIOGEOCHEMICAL CONSEQUENCES: % change warming only primary production both reduced nutrients only both fraction small reduced nutrients only warming only export production warming only both reduced nutrients only year • lower nutrients favors small recycling plankton: Dutkiewicz et al, GBC, 2013 Stephanie Dutkiewicz http://ocean.mit.edu/~stephd
BIOGEOCHEMICAL CONSEQUENCES: % change warming only primary production both reduced nutrients only both fraction small reduced nutrients only warming only export production warming only both reduced nutrients only year • lower nutrients favors small recycling plankton: • feedback - less export of carbon to deep ocean Dutkiewicz et al, GBC, 2013 Stephanie Dutkiewicz http://ocean.mit.edu/~stephd
BIOGEOCHEMICAL CONSEQUENCES: 10 model mean IGSM+Darwin PP change (RCP8.5) EP change (RCP8.5) Dutkiewicz et al, GBC, 2013 Bopp et al BGD, 2013 Stephanie Dutkiewicz http://ocean.mit.edu/~stephd
BIOGEOCHEMICAL CONSEQUENCES: Both Temperature only Circulation/mixing only Dutkiewicz et al, GBC, 2013 Stephanie Dutkiewicz http://ocean.mit.edu/~stephd
ECOLOGICAL CONSEQUENCES: ACIDIFICATION Stephanie Dutkiewicz http://ocean.mit.edu/~stephd
ECOLOGICAL CONSEQUENCES: ACIDIFICATION • Ocean has absorbed about 1/3 anthropogenic CO2 • Higher carbon leads to increased in acidity (lower pH) 1860 2000 2100 Surface pH alkaline>7 neutral=7 acidic<7 Stephanie Dutkiewicz http://ocean.mit.edu/~stephd
ECOLOGICAL CONSEQUENCES: ACIDIFICATION • Ocean has absorbed about 1/3 anthropogenic CO2 • Higher carbon leads to increased in acidity (lower pH) 1860 2000 2100 “business as usual” scenario Surface pH alkaline>7 neutral=7 acidic<7 Numerical Simulation: IGSM Dutkiewicz et al, 2005 Stephanie Dutkiewicz http://ocean.mit.edu/~stephd
ECOLOGICAL CONSEQUENCES: ACIDIFICATION • Higher carbon leads to increased in acidity (lower pH) 300ppm, 800ppm, corrosion at high pCO2 Response to enhanced CO2: detrimental neutral beneficial Fu et al, L+O, 2002 For summary: Doney et al, Ann Rev Mar Sci, 2009 Stephanie Dutkiewicz http://ocean.mit.edu/~stephd